本课程是机器学习的本科课程。ml是人工智能的子场。它可以帮助工程师构建自动化系统,从经验中学习。它可以帮助机器做出数据驱动的决策。例如,用于导航的Google地图使用路线网络,实时流量特征,旅行时间等。使用ML算法预测适合您的路径。ml是一个弱学科领域,根源在计算机科学和数学上。ml方法,最好使用概率和统计工具来理解其行为。通过整合数学原则,您将学会有效地应对机器学习挑战,并发展与专业数据科学家相似的深刻理解。根据最新的估计,每天创建3.28亿TB的数据。随着数据越来越多的数据,对数据分析的自动化方法的需求继续增长。本课程的目标是开发可以自动检测数据模式的方法,然后使用未覆盖的模式来预测未来感兴趣的结果。本课程将涵盖许多ML和Gen AI模型和算法,包括线性回归,多层神经网络,支持向量机,贝叶斯网络,Gaussian Mixture模型,聚类算法,生成的对抗性对抗(GANS),RNNS,RNNS和RENFORSSICTION学习技术。课程目标如下:实践经验,使您可以选择最佳模型并掌握对他们成功至关重要的基本实现细节。实用会话(编码任务)将涉及使用现实世界数据,从而通过各种ML技术提高您在调试和完善模型方面的熟练程度。
主要关键词