Loading...
机构名称:
¥ 1.0

摘要:必须提早发现火灾,以防止可能造成的危险事故。传统的火灾检测系统使用诸如传感器之类的硬件来检测火的存在。使用深度学习和机器学习提供了一种更自动化的方法。本研究谈论使用大型数据集使用卷积神经网络。此数据集有助于减少误报,假否定性,并提供更准确的分类。雾,天气,气候,日出,日落,野火和非火灾图像被收集和组合。这样做是为了使雾与烟雾混淆,并且所有橘红色的物体都不会被误解为火。图像增强是为了增加数据集的大小并使其更通用。CCTV镜头的视频被分为框架并进行了加工。这些框架被馈入经过训练的CNN模型,该模型的精度为0.94。如果任何框架显示出略有火,则会提高火警。这种实时立即检测火将防止大火的蔓延,并有助于尽快扑灭。开发的用户界面具有处理视频和图像的选项。完成此操作后,使用气流,分贝,频率和距离等声波的属性来预测火是否可以熄灭。使用具有所有这些功能的标签数据集对机器学习模型进行了培训。决策树分类器显示上述0.97的精度最高。通过使用这些技术,火灾检测和灭绝的预测变得更加容易,更有效。

使用计算机视觉和深度

使用计算机视觉和深度PDF文件第1页

使用计算机视觉和深度PDF文件第2页

使用计算机视觉和深度PDF文件第3页

使用计算机视觉和深度PDF文件第4页

使用计算机视觉和深度PDF文件第5页