Loading...
机构名称:
¥ 1.0

摘要 - 培训后的机器学习旨在从机器学习模型的训练数据集中删除点:例如,当用户要求删除其数据时。虽然已经提出了许多未学习的方法,但没有一个使用户能够审核该过程。此外,最近的工作表明,用户无法仅凭检查模型参数的检查就无法验证其数据是否是从模型参数中删除的。而不是关于参数的推理,我们建议将可验证的删除学习视为安全问题。为此,我们提出了第一个对可验证的验证的加密定义,以正式捕获未学习系统的保证。在此框架中,服务器首先计算了该模型在数据集d上训练的证明。给定用户的数据点D要求删除,服务器使用未学习算法更新模型。然后,它提供了正确执行未学习和D /∈D'的证明,其中D'是新的训练数据集(即已删除了D)。我们的框架通常适用于我们作为可接受功能的不同学习技术。我们使用SNARKS和HASH链中的密码假设在框架中实例化协议。最后,我们为三种不同的学习技术实施了协议,并验证其对线性回归,逻辑回归和神经网络的可行性。

可验证且可证明的安全机器

可验证且可证明的安全机器PDF文件第1页

可验证且可证明的安全机器PDF文件第2页

可验证且可证明的安全机器PDF文件第3页

可验证且可证明的安全机器PDF文件第4页

可验证且可证明的安全机器PDF文件第5页