Pearl's Do Colculus是一种从观察数据中学习可识别的因果关系效应的完整公理方法。当这种效果无法识别时,有必要在系统中执行通常昂贵的干预措施的集合来学习因果关系。在这项工作中,我们考虑了设计一系列干预措施的问题,并以最低成本确定所需的效果。首先,我们证明了此问题是NP完整的,随后提出了一种可以找到最佳解决方案或对数的算法的算法。这是通过在我们的问题与最小击球设置问题之间建立联系来完成的。此外,我们提出了几种多项式启发式算法来解决问题的计算复杂性。尽管这些算法可能会偶然发现亚最佳解决方案,但我们的模拟表明它们在随机图上产生了小的遗憾。