1。V. H. Almendra-Hernández,G。Ambrus和M. Kendall,通过稀疏近似,离散计算的定量Helly-type定理。GEOM。70(2022),1707。https://doi.org/10.1007/S00454-022–00441–5 2。I.Bárány和A. Heppes,在平面定量定理的确切常数上,离散计算。GEOM。12(1994),否。4,387–398。3。I.Bárány,M。Katchalski和J. Pach,定量的Helly-type定理,Proc。Amer。 数学。 Soc。 86(1982),否。 1,109–114。 4。 K.Böröczky,Jr,有限的包装和覆盖,《数学中的剑桥大学》,第1卷。 154,剑桥大学出版社,剑桥,2004年。 5。 K. M. Ball和M. Prodromou,是Vaaler定理的敏锐组合版本。 伦敦数学。 Soc。 41(2009),否。 5,853–858。 6。 P。黄铜,在平面中的定量Steinitz定理上,离散计算。 GEOM。 17(1997),否。 1,111–117。 7。 C.Carathéodory,überdenvariabilitätsbereichfourier'schen konstanten von potitiven potitiven harmonischen funktionen,Rendiconti del Circolo Matematico di Palermo(1884-1940)32(1911),否。 1,193–217。 https://doi.org/10。 1007/bf03014795 8。 J. A. de Loera,R。N. La Haye,D。Rolnick和P.Soberón,用于连续参数的定量组合几何,离散计算。 GEOM。 57(2017),第1期。 2,318–334。Amer。数学。Soc。86(1982),否。1,109–114。4。K.Böröczky,Jr,有限的包装和覆盖,《数学中的剑桥大学》,第1卷。 154,剑桥大学出版社,剑桥,2004年。 5。 K. M. Ball和M. Prodromou,是Vaaler定理的敏锐组合版本。 伦敦数学。 Soc。 41(2009),否。 5,853–858。 6。 P。黄铜,在平面中的定量Steinitz定理上,离散计算。 GEOM。 17(1997),否。 1,111–117。 7。 C.Carathéodory,überdenvariabilitätsbereichfourier'schen konstanten von potitiven potitiven harmonischen funktionen,Rendiconti del Circolo Matematico di Palermo(1884-1940)32(1911),否。 1,193–217。 https://doi.org/10。 1007/bf03014795 8。 J. A. de Loera,R。N. La Haye,D。Rolnick和P.Soberón,用于连续参数的定量组合几何,离散计算。 GEOM。 57(2017),第1期。 2,318–334。K.Böröczky,Jr,有限的包装和覆盖,《数学中的剑桥大学》,第1卷。154,剑桥大学出版社,剑桥,2004年。5。K. M. Ball和M. Prodromou,是Vaaler定理的敏锐组合版本。伦敦数学。Soc。41(2009),否。5,853–858。 6。 P。黄铜,在平面中的定量Steinitz定理上,离散计算。 GEOM。 17(1997),否。 1,111–117。 7。 C.Carathéodory,überdenvariabilitätsbereichfourier'schen konstanten von potitiven potitiven harmonischen funktionen,Rendiconti del Circolo Matematico di Palermo(1884-1940)32(1911),否。 1,193–217。 https://doi.org/10。 1007/bf03014795 8。 J. A. de Loera,R。N. La Haye,D。Rolnick和P.Soberón,用于连续参数的定量组合几何,离散计算。 GEOM。 57(2017),第1期。 2,318–334。5,853–858。6。P。黄铜,在平面中的定量Steinitz定理上,离散计算。GEOM。17(1997),否。 1,111–117。 7。 C.Carathéodory,überdenvariabilitätsbereichfourier'schen konstanten von potitiven potitiven harmonischen funktionen,Rendiconti del Circolo Matematico di Palermo(1884-1940)32(1911),否。 1,193–217。 https://doi.org/10。 1007/bf03014795 8。 J. A. de Loera,R。N. La Haye,D。Rolnick和P.Soberón,用于连续参数的定量组合几何,离散计算。 GEOM。 57(2017),第1期。 2,318–334。17(1997),否。1,111–117。7。C.Carathéodory,überdenvariabilitätsbereichfourier'schen konstanten von potitiven potitiven harmonischen funktionen,Rendiconti del Circolo Matematico di Palermo(1884-1940)32(1911),否。1,193–217。https://doi.org/10。 1007/bf03014795 8。 J. A. de Loera,R。N. La Haye,D。Rolnick和P.Soberón,用于连续参数的定量组合几何,离散计算。 GEOM。 57(2017),第1期。 2,318–334。https://doi.org/10。1007/bf03014795 8。J.A.de Loera,R。N. La Haye,D。Rolnick和P.Soberón,用于连续参数的定量组合几何,离散计算。GEOM。57(2017),第1期。2,318–334。9。G. Ivanov和M.Naszódi,一种定量的Helly-type定理:Hyothet中的遏制,Siam J.离散数学。36(2022),否。2,951–957。10。D. Kirkpatrick,B。Mishra和C.-K。 YAP,定量Steinitz的定理,并应用了多方面抓握,离散计算的应用。GEOM。7(1992),否。3,295–318。11。E. Steinitz,Bedingt Konvergente Reihen und Konvexe Systeme,J。ReineAngew。 数学。 143(1913),128-176。E. Steinitz,Bedingt Konvergente Reihen und Konvexe Systeme,J。ReineAngew。数学。143(1913),128-176。143(1913),128-176。
主要关键词