Loading...
机构名称:
¥ 1.0

摘要 - 近年来,有效利用Edge服务器来帮助车辆处理计算密集型和潜伏期敏感的任务已成为车辆边缘计算(VEC)中的关注点。在本文中,我们采用了一种合作方法,该方法利用了多个边缘服务器的集体功能。此策略旨在有效管理任务并减轻对这些服务器施加的计算负担。具体来说,图形神经网络(GNN)被应用于提取和分类功能,例如多个边缘服务器的地理位置和通信状态,从而可以选择最合适的服务器进行协作任务执行。我们已经利用太阳能进行了本地计算,有效地实现了环境保护并减轻了车辆的当地能源负担。此外,定义了一种新颖的边缘吸引公式来完善聚类的合理性。此外,还采用了深入的加固学习(DRL)来实时下载决策。为了确保在减轻成本的同时实验准确性,我们建立了相应的数字双胞胎环境来获取实验数据。通过对其他三种基线方法进行比较分析,我们有效地减少了任务完成时间,从而满足了时间敏感任务的严格要求。索引术语 - 行驶边缘计算,车辆互联网,数字双胞胎,任务卸载,图形神经网络,深度强化学习

在Multi ...

在Multi ...PDF文件第1页

在Multi ...PDF文件第2页

在Multi ...PDF文件第3页

在Multi ...PDF文件第4页

在Multi ...PDF文件第5页

相关文件推荐

2024 年
¥1.0
2024 年
¥1.0
2018 年

...

¥1.0
2025 年

...

¥1.0
2023 年

...

¥1.0
2024 年
¥1.0
2025 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2023 年
¥2.0
2024 年
¥18.0
2024 年
¥1.0
2024 年

...

¥3.0
2024 年
¥1.0
2024 年
¥1.0
2025 年

...

¥1.0
2025 年
¥1.0
2024 年

...

¥2.0
1900 年
¥1.0
1900 年
¥1.0
2024 年

...

¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2024 年
¥3.0
2024 年

...

¥3.0
2025 年
¥1.0
2024 年

...

¥1.0
2024 年
¥1.0