这种可穿戴健康设备和在线健康信息系统的广泛使用已经产生了对更个性化的健康建议的越来越多的需求,这是健康推荐系统(HRS)旨在解决的挑战。尽管有潜力,但目前的人力资源管理人员面临着将建议与用户的期望保持一致的挑战,这是建立对此类系统的信任的关键因素。hrs发现了与人姿势估计(HPE)的强大协同作用。的确,观察对用户健康的冒险风险对于提供有效的建议和支持以及应用于医疗保健领域的研究至关重要。例如,在职业医学领域采用HPE来进行人体工程学的姿势评估。的确,不纳入工作的主要原因之一是反复出现不当姿势和运动引起的健康问题[1]。为了解决这些问题,人体工程学家通过直接现场观察或分析执行常规工作任务的工人的视频记录来评估姿势。传统的姿势评估方法通常依赖于根据对各个方面的评估(例如生理角度,负载重量和重复次数)提供得分的标准化指数。在人力资源中,一个可能的创新方面是利用从HPE技术收集的数据,不仅可以提高性能,而且还可以根据用户的特征和动作提供更多个性化的解释。基于这些想法,我提出了一项初步工作[2],重点是办公室工作人员的姿势校正。在文献中,许多研究共享了我们的姿势分类的目标[3,4,5],但是他们的方法依赖于在严格的约束下收集的数据,例如使用专用摄像机,传感器或其他嵌入椅子中的数据。相比之下,我提出了一种基于从经典摄像机和轻巧,基于AI的快速分类模型的数据的简单方法。通过分析分类模型的结果,我们就可以建议对改善姿势改善改善工人的福祉。因此,我致力于在博士学位期间追求的目标。是引入一种新颖的方法,该方法将HPE的数据集成到人力资源管理中,为更精确和个性化的建议铺平了道路。
主要关键词