从高维数据(例如功能磁共振成像(fMRI))中对时空脑动力学进行建模是神经科学中的一项艰巨任务。现有的fMRI分析方法采用了手工制作的功能,但是功能提取风险在fMRI扫描中失去基本信息的过程。为了应对这一挑战,我们提出了Swift(Swi N 4d F Mri T Ransformer),这是一种Swin Transformer架构,可以直接从fMRI卷中以记忆和计算有效的方式学习大脑动力学。Swift通过实施4D窗口多头自我发项机制和绝对位置嵌入来实现这一目标。我们使用多个大型静止状态FMRI数据集评估SWIFT,包括人类连接群落项目(HCP),青少年脑认知发展(ABCD)和UK Biobank(UKB)数据集,以预测性别,年龄和认知智能。我们的实验结果表明,Swift的表现优于最新的最新模型。此外,通过利用其端到端的学习能力,我们表明,基于对比的基于损失的自我监管的SWIFT预训练可以提高下游任务的性能。补充 - 我们采用可解释的AI方法来识别与性别分类相关的大脑区域。据我们所知,Swift是第一个以端到端方式处理维数时空脑功能数据的Swin Transformer架构。我们的工作在神经科学研究中促进功能性脑成像的可扩展学习方面具有巨大的潜力,通过减少与将变压器模型应用于高维fMRI相关的障碍。项目页面:https://github.com/transconnectome/swift
主要关键词