摘要 - 锂离子(Li-ion)电池的使用已在各个行业中广泛普及,从供电便携式电子设备到推动电动汽车和支持储能系统。锂离子电池可靠性中的一个核心挑战在于准确预测其剩余使用寿命(RUL),这是积极维护和预测分析的关键措施。本研究提出了一种新颖的方法,该方法利用了多个Denoising模块的功能,每个模块都训练了解决电池数据中通常遇到的特定类型的噪声。具体而言,使用Denoising自动编码器和小波Denoiser用于生成编码/分解表示形式,随后通过专用的自我发明变压器编码来处理。在对NASA和CALCE数据进行了广泛的实验之后,在一组不同的噪声模式下估算了一系列健康指标值。这些数据上报告的错误指标与最近文献中报道的最先进的相当或更好。索引术语 - 验证和健康管理,剩余使用寿命,自动编码器,锂离子电池,变压器,电池健康
主要关键词