[2]电子和电气工程可爱的专业大学,旁遮普省,印度摘要:糖尿病性视网膜病(DR)是一种影响视网膜的危险眼疾,可能导致视力丧失和失明,尤其是在糖尿病患者中。早期识别对于良好的结果至关重要,但是只能通过耗时和劳动密集的彩色眼镜图片来诊断糖尿病性视网膜病。为了克服这一挑战,这项研究提出了一种基于深度学习的策略,该策略通过增强的神经网络(IDR-ENN)使用糖尿病性视网膜病变分级,将视网膜图片分类为糖尿病性视网膜病的不同阶段。在一个数据集中对所提出的方法进行了培训,该数据集包括测试集中的2200张照片和训练集中的11000个彩色视网膜图像。模拟结果表明,基于IDR的算法可以达到极好的准确性,灵敏度和特异性。在这项研究中,我们提出了一种方法来显着减少糖尿病性视网膜病变检测的计算时间。一种NovelIdr-enn方法可在糖尿病性视网膜病变检测的训练计算时间中显着减少85%。本文的总体结论强调了深度学习的潜力,以改善糖尿病性视网膜病的诊断和分级,这可能会对预防由这种疾病引起的失明产生重大影响。关键字:深度学习,糖尿病性视网膜病,盲型跨跨神经网络+,诊断,分级,预防1。简介
主要关键词