抽象在内核方法的背景下建立了量子和经典机器学习之间最自然的联系之一。内核方法依赖于内核,它们是生活在大特征空间中的特征向量的内部产物。量子核通常通过明确构建量子特征状态然后采用其内部产品(此处称为嵌入量子核)来评估。由于通常在不明确使用特征向量的情况下评估经典核,因此我们想知道表达嵌入量子内核的表现方式。在这项工作中,我们提出了一个基本问题:所有量子内核是否可以表示为量子特征状态的内部产物?我们的第一个结果是阳性:调用计算普遍性,我们发现,对于任何内核函数,始终存在相应的量子特征图和嵌入量子内核。该问题的操作阅读越多,就与有效的结构有关。在第二部分中,我们正式化了有效嵌入量子内核的普遍性问题。对于移位不变的内核,我们使用随机傅立叶特征的技术表明它们在所有内核的广泛类别中是通用的,这些核允许有效的傅立叶采样变体。然后,我们将此结果扩展到了一类新的所谓构图内核,我们显示的还包含了最近在最近的作品中引入的预测的量子内核。在证明了嵌入量子内核的普遍性以用于移位不变和组成内核之后,我们确定了朝向新的,更外来和未开发的量子核族的方向,如果它们与有效嵌入量子核相对应,则仍然保持开放。