本文根据信息标准研究了转移学习的效果。我们提出了一个程序,将转移学习与锤摩尔的CP(TLCP)结合在一起,并证明它在准确性和稳定性方面优于常规木棍的CP标准。Our theoretical results indicate that, for any sample size in the target domain, the proposed TLCp estimator performs better than the Cp estimator by the mean squared error (MSE) metric in the case of orthogonal predictors, provided that i) the dissimilarity between the tasks from source domain and target domain is small, and ii) the procedure parameters (complexity penalties) are tuned according to certain explicit rules.此外,我们表明我们的转移学习框架可以扩展到其他特征选择标准,例如贝叶斯信息标准。通过分析正交化CP的溶液,我们确定了一个在非正交预测因子的情况下,渐近地近似CP标准的解。对于非正交TLCP获得了相似的结果。最后,使用真实数据的模拟研究和应用证明了TLCP方案的有用性。关键字:转移学习,功能选择,槌狼的CP
主要关键词