Loading...
机构名称:
¥ 2.0

我们探讨了多模式行为线索的疗效,以解释人性和访谈特异性特征。我们利用名为Kinemes的基本头部动作单元,原子面部运动称为动作单元和语音特征来估计这些以人为中心的特征。经验结果证实,运动和动作单元可以发现多种特征的行为,同时还可以在支持谓词方面进行解释。对于融合提示,我们探讨了决策和特征级融合,以及基于添加剂的融合策略,该策略量化了三种方式对性状预测的相对重要性。在麻省理工学院访谈和第一印象候选筛查(FICS)数据集中检查各种长期长期记忆(LSTM)架构,用于分类和回归数据集,我们注意到:(1)多模式的方法优于非模态反应,以达到0.98的最高PCC,以获得激动人心的特质,以实现MIT和0.57的高级特征,以实现fick和0.57。 (2)通过单峰和多模式方法可以实现有效的性状预测和合理的解释,并且(3)遵循薄片的方法,即使是从两秒钟的行为snippets中也实现了有效的性状预测。我们的提示代码可在以下网址提供:https://github.com/deepsurbhi8/explainable_human_traits_预测。

从头运动和面部表达动力学

从头运动和面部表达动力学PDF文件第1页

从头运动和面部表达动力学PDF文件第2页

从头运动和面部表达动力学PDF文件第3页

从头运动和面部表达动力学PDF文件第4页

从头运动和面部表达动力学PDF文件第5页