Loading...
机构名称:
¥ 1.0

摘要轴承是带有变速箱的任何机械的关键元素。必须有效诊断轴承断层以确保机械的安全性和正常操作。因此,轴承中机械故障的识别和评估对于确保可靠的机械操作非常重要。这项比较研究表明,通过利用各种机器学习方法,包括SVM,KNN,线性回归,脊回归,XGB回归,ADABOOST回归和CAT促进回归,轴承诊断的性能。轴承就像机械世界的无名英雄一样,在船上从车轮到螺旋桨,都极大地支撑和指导所有事物的平稳运动。然而,与其他机械组件一样,随着时间的流逝,轴承的持续使用会导致磨损,这最终可能导致故障。

使用机器学习模型进行故障诊断

使用机器学习模型进行故障诊断PDF文件第1页

使用机器学习模型进行故障诊断PDF文件第2页

使用机器学习模型进行故障诊断PDF文件第3页

使用机器学习模型进行故障诊断PDF文件第4页

相关文件推荐

2024 年
¥1.0
2021 年
¥2.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2021 年
¥1.0