热模拟在集成电路(IC)设计中至关重要,尤其是在向3D体系结构的转移时。随着晶体管密度的增加,散热成为一个重大挑战,导致热点和热梯度可以降低芯片性能,可靠性和寿命。因此,芯片设计期间的热分析是必不可少的任务[1]。传统的热分析方法,例如有限元方法(FEM),具有很高的精度。但是,这些计算方法需要3D体系结构的大量记忆,时间,设计和细粒度模拟。紧凑的热模型(CTM)提供了更有效的替代方案。虽然CTMS显着降低了计算要求,但它们依赖于数值求解器。这使CTMS计算对于具有动态工作负载或经常更改设计的应用程序上的计算昂贵。机器学习的最新进展(ML)具有热模拟的替代方法。mL模型可以直接预测温度分布,与数值求解器相比,提供了很大的加速。但是,现有的ML方法受到关键限制。这些模型需要大型数据集进行培训,依靠复杂的体系结构,例如卷积神经网络(CNN)或图形神经网络(GNN),并且常常缺乏对新平面图或不重新训练的电源分布的适应性[2]。这项工作通过设计与CTMS集成的轻量级ML框架来解决这些限制。我们的方法利用热传导方程的线性性质,使用线性回归开发一个简单的,物理知情的模型。通过将问题的物理学直接嵌入ML框架中,我们最大程度地减少了对大型
主要关键词