5 Vikram Sarabhai航天中心,印度Thiruvananthapuram,印度摘要:这项工作调查了增强学习的开发和优化,以预测发射车模拟中最坏情况的情况。模拟考虑了可能影响发射的各种环境因素,包括风条件,温度,大气压和其他参数。在这里,我们正在尝试确定火箭发射期间可能发生的潜在故障模式和异常。增强学习模型是使用目标函数培训的,该目标功能旨在准确预测火箭发射期间最坏情况。它还对导致最坏情况的因素提供了宝贵的见解,从而为降低风险和系统改进提供了有针对性的策略。这种方法旨在量化单个参数或其组合对预测最坏情况结果的影响。本文证明了加强学习的潜力,可以准确预测最坏情况,从而启动车辆模拟来验证算法的鲁棒性。开发的模型可以通过预测和减轻最坏情况的情况来为决策提供信息,并提高空间任务的总体弹性和效率。关键字 - 最坏的情况,强化学习,启动车辆模拟,环境因素,异常,故障模式,降低风险,空间任务
主要关键词