Loading...
机构名称:
¥ 1.0

摘要 - 手动跟踪教室出勤,这是一种备受推崇的传统方法,由于其对错误和效率低下的敏感性而提出了重大挑战。这些限制不仅消耗了宝贵的教师时间,而且损害了学术记录的准确性,从而影响了学生参与和表现的评估。回答这个问题,我们提出了一种使用基于机器学习的识别系统自动化课堂出勤的方法。这项研究旨在提高教育环境中出勤跟踪的准确性,效率和可靠性。我们研究的核心在于系统的设计和实施,阐明体系结构,数据流和集成到课堂环境中。我们的分析结果表明该系统可以跟踪出勤率的能力,同时提供有关其性能指标的准确信息。我们还深入研究了在课堂上实施此类技术的道德和实际考虑。通过使用基于机器学习的识别来自动化该过程,教育机构可以提高其运行效率,降低错误,并最终提供更有生产力的学习环境。我们的研究为教育研究和技术进步的未来途径打开了大门。关键字 - 自动出勤,出勤跟踪,面部识别,机器学习,课堂技术

使用基于机器学习的识别系统

使用基于机器学习的识别系统PDF文件第1页

使用基于机器学习的识别系统PDF文件第2页

使用基于机器学习的识别系统PDF文件第3页

使用基于机器学习的识别系统PDF文件第4页

使用基于机器学习的识别系统PDF文件第5页

相关文件推荐

2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2025 年
¥2.0
2024 年
¥1.0
2021 年
¥2.0
2024 年
¥1.0
2024 年
¥1.0