Loading...
机构名称:
¥ 1.0

摘要 - MALWARE分析师通常更喜欢使用呼叫图,控制流程图(CFGS)和数据流程图(DFGS)的反向工程(DFGS),涉及黑盒深度学习(DL)模型的利用。拟议的研究介绍了一条结构化管道,用于基于逆向工程的分析,与最新方法相比,提供了有希望的结果,并为子图中的恶意代码块提供了高级的可解释性。我们将规范可执行组(CEG)作为便携式可执行文件(PE)文件的新表示形式提出,将句法和语义信息独特地纳入其节点嵌入。同时,Edge具有捕获PE文件的结构方面。这是介绍涉及句法,语义和结构特征的PE文件表示形式的第一项工作,而以前的努力通常仅集中在句法或结构属性上。此外,识别出恶意软件肛门的可解释人工智能(XAI)中现有图形解释方法的局限性,这主要是由于恶意文件的特异性,我们介绍了基于遗传算法的图形解释器(gage)。gage在CEG上运行,努力确定与预测的恶意软件家族相关的精确子图。通过实验和比较,与先前的基准相比,我们提出的管道在模型鲁棒性得分和判别能力方面表现出很大的改善。此外,我们已经成功地使用了对现实世界数据的实用应用,从而产生了有意义的见解和解释性。这项研究提供了一种强大的解决方案,可以通过对恶意软件行为有透明而准确的了解来增强网络安全。此外,所提出的算法专门用于处理基于图的数据,有效解剖复杂的含量和隔离影响的节点。索引术语 - 模式分析,可解释的AI,解释性,图,遗传算法

基于遗传算法的图形解释器用于恶意软件分析

基于遗传算法的图形解释器用于恶意软件分析PDF文件第1页

基于遗传算法的图形解释器用于恶意软件分析PDF文件第2页

基于遗传算法的图形解释器用于恶意软件分析PDF文件第3页

基于遗传算法的图形解释器用于恶意软件分析PDF文件第4页

基于遗传算法的图形解释器用于恶意软件分析PDF文件第5页

相关文件推荐

2021 年
¥1.0