Loading...
机构名称:
¥ 1.0

NSR:机器学习为何有用?Dietterich:机器学习为创建高性能软件提供了一种新方法。传统软件工程中,我们与用户交谈,制定需求,然后设计、实施和测试算法以实现这些需求。有了机器学习,我们仍然制定软件系统的总体目标,但我们不是设计自己的算法,而是收集训练示例(通常由人标记数据点),然后应用机器学习算法自动学习所需的功能。这种新方法使我们能够为许多使用以前的软件工程方法无法解决的问题创建软件。尤其是,以前用于视觉对象检测和识别、语音识别和语言翻译的方法的性能还不够好,无法使用。但随着机器学习的最新进展,我们现在拥有可以执行这些任务的系统,其准确度与人类的表现相当(或多或少)。因此,机器学习提供了一种关键技术,可以实现自动驾驶汽车、实时驾驶指令、跨语言用户界面和语音用户界面等应用。机器学习对于网络搜索引擎、推荐系统和个性化广告也很有价值。许多人预测机器学习方法将引发医学革命,特别是在医学图像的自动收集和分析方面。机器学习也是现代公司许多运营方面的有前途的工具。例如,机器学习可以帮助预测客户需求并优化供应链。这也是训练机器人执行灵活制造任务的关键技术。NSR:为什么机器学习对科学界和社会如此重要?

对牛津大学学者 Thomas Dietterich 的采访

对牛津大学学者 Thomas Dietterich 的采访PDF文件第1页

对牛津大学学者 Thomas Dietterich 的采访PDF文件第2页

对牛津大学学者 Thomas Dietterich 的采访PDF文件第3页

对牛津大学学者 Thomas Dietterich 的采访PDF文件第4页

对牛津大学学者 Thomas Dietterich 的采访PDF文件第5页