Loading...
机构名称:
¥ 1.0

摘要 — 感知和学习算法的进步已使机器人进行人体检测的解决方案越来越成熟,特别是在某些用例中,例如自动驾驶汽车的行人检测或消费者环境中的近距离人体检测。尽管取得了这些进展,但一个简单的问题:哪种传感器-算法组合最适合手头的人体检测任务?仍然很难回答。在本文中,我们通过对机器人技术中常用的传感器-算法组合进行系统的跨模态分析来解决这个问题。我们比较了最先进的人体检测器在具有挑战性的工业用例中对 2D 范围数据、3D 激光雷达和 RGB-D 数据及其选定组合的性能。我们进一步解决了工业目标领域数据稀缺的相关问题,并且最近对 3D 点云中人体检测的研究主要集中在自动驾驶场景上。为了将这些方法上的进步用于机器人应用,我们利用一种简单但有效的多传感器迁移学习策略,通过扩展强大的基于图像的 RGB-D 检测器,以弱 3D 边界框标签的形式为激光雷达检测器提供跨模态监督。我们的结果表明,在检测性能、泛化、帧速率和计算要求方面,不同方法之间存在很大差异。由于我们的用例包含代表广泛服务机器人应用的困难,我们相信这些结果为进一步研究指出了相关的开放挑战,并为从业者设计他们的机器人系统提供了宝贵的支持。

机器人人体检测的跨模态分析

机器人人体检测的跨模态分析PDF文件第1页

机器人人体检测的跨模态分析PDF文件第2页

机器人人体检测的跨模态分析PDF文件第3页

机器人人体检测的跨模态分析PDF文件第4页

机器人人体检测的跨模态分析PDF文件第5页