详细内容或原文请订阅后点击阅览
端到端的模型培训和Amazon Sagemaker Unified Studio
In this post, we guide you through the stages of customizing large language models (LLMs) with SageMaker Unified Studio and SageMaker AI, covering the end-to-end process starting from data discovery to fine-tuning FMs with SageMaker AI distributed training, tracking metrics using MLflow, and then deploying models using SageMaker AI inference for real-time inference.我们还讨论了选择合适的实例大小并在使用萨格马克统一工作室的jupyterlab笔记本时分享一些最佳实践的最佳实践。
来源:亚马逊云科技 _机器学习