尽管使用了药理疗法,但心脏病的发病率和死亡率仍然很高。本文旨在审查多种有希望的疗法,并强调干细胞可以发挥的创新作用。干细胞已被确定为心脏病理中当前主要医学和手术干预措施的潜在治疗替代方法,因为这些细胞具有多能功能,可以帮助心脏再生和重塑而不会损害疤痕组织。许多研究探讨了干细胞治疗心脏病中的初步安全性和功效,特别是缺血性心脏病(IHD),先天性心脏病(CHD)和扩张的心肌病(DCM)。IHD研究利用了各种干细胞类型的冠状动脉内和心脏内递送,并发现了心膜内递送自体性间充质干细胞注射到梗塞心脏组织中的功效。同样,CHD研究利用了心圈衍生细胞的冠状化递送以及良好的诺伍德程序,发现心脏功能和体细胞生长的益处。DCM在鼠模型中的研究以及随后的临床试验表明,通过肌肉卫星细胞标记的细胞类型,用肌肉功能改善的细胞类型移植,通过肾上部或跨心脏心脏心脏移植方法传递时的运动能力。虽然这些累积结果显示出希望,但需要更长的随访和较大的样本量来验证这种治疗方法在长期内对心脏疾病的疗效。干细胞与现有疗法结合使用,有可能减轻与心脏病理相关的严重发病率和死亡率。
1。2。Medicina,洛杉矶大学,圣地亚哥,智利。 div>3。医学外科医生,洛杉矶大学,圣地亚哥,智利。 div>4。制药化学家,安德烈斯·贝洛大学(Andres Bello University),圣地亚哥,智利。 div>摘要 div>
人工智能 (AI) 已经彻底改变了多个领域,高等教育也不例外。在大学环境中,特别是在系统工程等领域,人工智能已经开始改变教学和评估的方式,带来了前所未有的机遇和挑战。人工智能能够自动执行任务、个性化教学和提高管理效率,这对教育行业来说是一项重大进步 [1]。然而,这些机遇也伴随着必须紧急解决的道德和实际问题 [2]。ChatGPT 等生成式人工智能模型的出现引发了关于它们对学术诚信和学习过程的影响的争论。虽然一些教育工作者认为这些技术是加强教育的有力工具,但另一些人担心它们可能会破坏学生的批判性思维能力并损害他们作品的真实性 [2]。这些担忧
对于 STEM 教育,AI 可以提供个性化学习(AI 分析学生数据并根据他们的个人需求和学习风格调整教育材料);第二,通过创建交互式可视化和模拟来改进可视化,帮助学生更好地理解抽象概念,例如可视化复杂的数学方程式或进行科学虚拟实验;第三,评估任务和提供反馈的自动化;第四,培养解决问题的能力,例如,学生可以使用人工智能来开发和测试算法或解决复杂的数学问题;第五,提高学习的动力,例如,当学生创建虚拟世界、参加在线编程竞赛等。
在司法部门增加了人工智能(AI)的使用引起了人们对AI辅助决策是否维护行使司法酌处权的基本价值的关键问题。近年来,法院越来越多地通过AI来提高行政效率并加强司法的机会。1使用AI来提高行政效率包括AI系统,该系统支持法院处理和管理文件,数字记录听证会以及视听链接,使证人能够在没有外表的情况下提供证据。2电子申请,电子审判和电子案例管理系统,使律师能够通过诉讼数据库访问法院文件,被广泛认为是提高行政效率。3然而,尽管各个国家都采用了AI系统来支持决策,但这种使用围绕着很大的焦虑。例如,使用刑事风险评估算法来预测未来的不当行为风险,这引起了人们对问责制,透明和公平过程的担忧。4也担心模拟司法酌处权的AI系统是否可以维护司法决策的基本价值观。5与使用AI有关的法律和政策仍然相对非正式,但尚未发育不足,这一事实突显了这种担忧。
人工智能 (AI) 正在改变企业处理招聘和聘用流程的方式。随着组织越来越多地转向使用 AI 来简化招聘流程,围绕其使用的道德考虑变得越来越重要。虽然 AI 可以提供减少偏见和提高效率等好处,但它也引发了对隐私、公平和问责制的担忧。本研究论文的目的是探讨在招聘过程中使用 AI 的道德考虑,并确定确保合乎道德的 AI 招聘实践的最佳实践。AI 是指开发可以执行通常需要人类智能的任务(例如决策和解决问题)的计算机系统。在招聘方面,AI 算法可用于扫描简历、进行就业前评估和分析视频面试以识别潜在候选人。AI 有可能通过识别高质量候选人并减少招聘所需的时间和资源来改善招聘结果。然而,在招聘中使用人工智能也引发了与隐私、公平和问责相关的道德问题。
社会科学的景观本质上是复杂且多方面的,要求采用全面且细微的研究方法。本文强调了混合方法研究在解决社会现象的复杂和动态性质方面的重要性。混合方法不仅提高了研究发现的有效性和可靠性,而且还可以使人们对社会现象有整体理解,并使研究人员能够探索传统的单人方法通常缺乏人类经验,行为和互动的全面和多样性。此外,混合方法促进了数据的三角剖分,从而使研究人员能够通过各种镜头来证实和验证结果,从而加强了结论的鲁棒性。混合方法有助于开发更有效和知情的社会和公共政策干预措施。在社会科学研究中采用混合方法不仅是一种选择,而且是释放探究潜力并促进我们对复杂社会世界的集体理解的全部潜力的必要性。
● 辅助创造力:学生可以利用生成式人工智能激发不同学科的创造力,包括写作、视觉艺术和音乐创作。● 协作:生成式人工智能工具可以与学生合作开展小组项目,贡献概念、提供研究支持和识别各种信息之间的关系。● 交流:人工智能可以为学生提供实时翻译、个性化语言练习和交互式对话模拟。● 内容创建和增强:人工智能可以帮助生成个性化的学习材料、摘要、测验和视觉辅助工具,帮助学生组织思想和内容,并帮助复习内容。● 辅导:人工智能技术有可能使一对一辅导和支持民主化,使更广泛的学生更容易获得个性化学习。
“我是一名人力资源沟通专家,拥有五年多的经验。在过去三年中,我一直负责 Hartley 公司的人力资源沟通工作。在这个职位上,我管理一个由三人组成的团队,我们负责向 8,000 名员工传达所有福利和政策。在此职位之前,我的职业生涯始于 General Financial 的人力资源协调员,两年间我学到了很多东西。当我的经理调到 Hartley 时,她邀请我一起负责他们的人力资源沟通工作。我很喜欢在 Hartley 的时光,但我开始考虑下一步该怎么做,因为目前的职位没有太多的成长空间。在我职业生涯的这个阶段,我觉得我已经准备好将我的技能运用到一个更全球化的组织中,以应对一些新挑战,这就是我如此感兴趣的原因这个职位。”这是我的简历:{resume}
1型糖尿病(T1D)是一种自身免疫性疾病,其特征是胰腺中产生胰岛素的B细胞。这种破坏会导致慢性高血糖,因此需要终身胰岛素治疗来管理血糖水平。通常在儿童和年轻人中被诊断出,T1D可以在任何年龄段发生。正在进行的研究旨在揭示T1D潜在的确切机制并开发潜在的干预措施。其中包括调节免疫系统,再生B细胞并创建高级胰岛素输送系统的努力。新兴疗法,例如闭环胰岛素泵,干细胞衍生的B细胞替代和疾病改良疗法(DMTS),为改善T1D患者的生活质量并有潜在地朝着治疗方向前进。目前,尚未批准用于第3阶段T1D的疾病改良疗法。在第3阶段中保留B -cell功能与更好的临床结局有关,包括较低的HBA1C和降低低血糖,神经病和视网膜病的风险。肿瘤坏死因子α(TNF-A)抑制剂在三阶段T1D患者的两项临床试验中,通过测量C肽来保存B细胞功能,证明了效率。然而,在T1D的关键试验中尚未评估TNF-A抑制剂。解决T1D中TNF-A抑制剂的有希望的临床发现,突破T1D召集了一个主要意见领导者(KOLS)的小组。研讨会