编织材料变形发生在将织物形成更复杂的纺织结构的过程中,以及在成品的开发过程中。多种因素影响纺织材料的变形特性。关键因素是所用纱线的特性、织物的结构以及经纱和纬纱的密度。编织材料的各向异性特性要求分析织物经向和纬向的变形。此外,研究还包括分析与经向成 45° 角的编织材料变形。研究结果表明,增加纬纱的密度可以改善纬向和 45° 角的屈服和断裂极限特性。根据所得结果,提出了可用于预测平纹编织纺织材料在经向、纬向和 45° 角处受拉时变形的依赖关系。
引入Deformio,这是一种具有共同置换力输入和可变刚度输出的新型可变形显示。与先前的工作不同,我们的方法不需要PIN阵列或重新配置面板。相反,我们利用气动和电阻传感,使力检测和刚度控制在柔软的连续表面上。这使用户可以在柔软的表面上感知丰富的触觉反馈,并复制传统基于玻璃的屏幕的流体手指运动的好处。使用机器人臂,我们进行了一系列评估,并进行了3,267个试验,以量化触摸和力输入的性能以及刚度输出。此外,我们的研究证实了用户同时应用多力输入并区分刚度水平的能力。我们说明了Formio如何通过对日常互动的愿景来增强相互作用,并包括两个实施的独立示范。
在本文中,我们介绍了体积可靠的形态模型(VRMM),这是3D面部建模的新型体积和参数面部的先验。虽然最近的实数模型提供了比传统方法(例如3D形态模型(3DMM))的改进,但它们在模型学习和个性化重建方面面临挑战。我们的VRMM通过采用一个新颖的训练框架来克服这些方法,该培训框架有效地将身份,表达和照明的潜在空间编码为低维表示。该框架是通过自学学习的学习设计的,可大大减少培训数据的限制,从而使其在实践中更可行。博学的VRMM提供了重新的功能,并涵盖了全面的表达方式。我们演示了多功能性和有效性
b'B'The分数量子厅(FQH)状态是物质拓扑阶段的一些最佳研究的例子。它们的特征是各种拓扑量,例如准粒子电荷,霍尔电导,霍尔的粘度和边缘理论的手性中心电荷,这从根本上是由电子之间的非平凡相关性引起的。在这些状态下相关性的一种特别用途是\ xe2 \ x80 \ x9cguiding Center \ xe2 \ x80 \ x80 \ x9d静态结构因子\ xc2 \ xaf s(k),在长波长的情况下,在平移和In-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-nimememementscements中是四分之一的Quartic [k)。FQH接地的一个基本特征是,确定此四分之一术语的第四个等级张量满足所谓的\ xe2 \ x80 \ x9Chaldane绑定\ Xe2 \ x80 \ x80 \ x9d [2,3],较低的结合在长波长度的强度下,构成了hall [4 hall sects of Hall ted the the Hall [4 hall [4 hall]的强度。在旋转不变的情况下,当引导中心静态结构因子和霍尔粘度张量的四分之一项都由每个pa-rameter确定时,界限可以表示为两者之间的简单标量不平等。在物理层面上,可以理解为将QH状态与拓扑琐碎的产物状态区分开的相关性最小的存在,即,前者不能绝热地变形到后者。在FQH上进行了许多工作,涉及一类旋转不变的模型波函数(Laughlin [6],Moore-Read [7],Read-Rezayi [8]),与欧几里得的保形场理论有关,并使Haldane结合饱和[9,10]。这些模型状态是属于某些非常特殊模型的汉密尔tonians的最高密度状态(零能量特征态),并且在理解FQHE方面发挥了关键作用。他们非常特殊的功能之一是,它们是\ xe2 \ x80 \ x9cmaxmaximally手性\ xe2 \ x80 \ x9d,因为它们在圆柱形几何形状中仅包含一个与半融合状态相对于一个cut的圆柱状态的贡献。这是\ xe2 \ x80 \ x9cmaximal手性\ xe2 \ x80 \ x9d的非常强烈的条件:最大性手性的较弱版本是,纠缠谱的低较低部分(或同等地,拓扑模式)仅具有一种chirality的贡献。这个较弱的版本通常会被汉密尔顿人的基础状态所满足,而汉密尔顿人的基础状态却远离模型。在本文中,我们解决了一个问题 - 饱和hal -dane结合需要什么条件?我们在附录B中显示,连续旋转不变性是必需的。之所以如此,是因为角动量的波动有助于O(K \ Xe2 \ X84 \ X93)4的静态结构因子4,但对HALL粘度张量不足。对于旋转不变的系统,先前已显示[11 \ xe2 \ x80 \ x93 13],即\ xce \ xbd \ xbd \ xe2 \ x88 \ x92 = p /(2 np \ xe2 \ xe2 \ x88 \ x92 1)jain状态[14]不满意,不满意n> 1,不满足n> 1,不满意 任何一个。这些FQH状态包含旋转不变的基态上方的Spin-2重力激发的两种手势。特别是一些研究支持了后者[9]。这会导致长波长的静态结构因子的相关性比霍尔粘度的大小所需的更大的相关性。但是,尚不清楚是否需要强大的最大性手性或较弱的版本足以使各向同性FQH状态的结合饱和。我们以数值调查了这个问题,并提供了明确的证据,表明弱的最大手性不足。因此,我们期望只有理想的保形块波形饱和haldane结合。我们使用旋转不变的二维Hamilto-Nians在\ xce \ xbd = 1 / 3,1 / 5和2/5的FQH状态的长波长极限中计算静态结构因子。为此,我们在圆周的无限缸[15]上使用密度矩阵重新归一化组,并通过考虑大的l y /\ xe2 \ x84 \ x93来接近2D-LIMIT。我们计算O(K \ Xe2 \ X84 \ X93)的系数\ XC2 \ Xaf S 4)4项在指南中心静态结构因子的长波长膨胀中,并表明它比Haldane绑定的Haldane by by for Haldane by to haldane by to for for for Haldane to for Haldane to for Haldane to for for for f q QH的Haldane Hamiltonians的FQH地面。我们通过分析围绕模型'
一个年轻人在独自一人或瞬间分散注意力时最有可能淹死(世界卫生组织,2023年)。大多数致命的溺水事件发生在受害者独自一人或目击者但无法拯救他们时发生的。世界卫生组织(WHO)和其他医疗组织将溺水描述为呼吸障碍,或者由于淹没而无法呼吸。WHO将“溺水”定义为致命和非致命性,尽管该术语历史上仅被用来描述在海中死亡的情况。每年,有3,957名印度新生儿因溺水而丧生,一到四岁的孩子最脆弱。实际上,仅次于车祸是1至14岁儿童无意死亡的主要原因。15岁以下儿童中发生了大量的溺水死亡和非致命伤害。在2018年至2023年之间,由于15岁以下儿童溺水受伤,平均有371人溺水死亡和8,300次住院。溺水的孩子可能非常悲惨,并对家庭产生持久影响。由于可能没有足够的时间来拯救溺水的孩子,因此所有努力都应集中在预防上。
图5.2 Faro Company(A)LIDAR 360O的商业地面激光扫描仪(300O视野)视会(b)LIDAR工作原理(c)从LIDAR捕获的3D数据的平面视图。(D)低分辨率和高分辨率对周围环境捕获的图像的影响(礼貌:Faro Company)。
一种变形加密方案允许两个方共享所谓的双键,以嵌入秘密消息的封闭消息,以已建立的PKE方案的密文。这可以防止一个独裁者,该独裁者可以迫使接收者揭示PKE计划的秘密钥匙,但谁对双密钥的存在不明智。我们确定了波斯安诺,潘和杨的原始模型的两个局限性(Eurocrypt 2022)。首先,在其定义中,只能生成一次双密钥,以及一个键对。这是一个缺点,即独裁者上台后想要使用变形模式的接收者需要部署新的密钥对,这是一种潜在的可疑行为。第二,接收者无法区分密文是否包含秘密消息。在这项工作中,我们提出了一个克服这些局限性的新模型。首先,我们在部署后允许将多个双键与密钥对相关联。,如果双键仅取决于公共密钥,这也可以实现可否认性。第二,我们提出了一个自然的鲁棒性概念,该概念确保解密定期加密的消息会导致一个特殊的符号,表明没有隐秘消息,这也消除了某些攻击。最后,为了实例化我们对变形加密的新的,更强的定义,我们提供了通用和具体的构造。具体而言,我们表明,Elgamal和Cramer-shoup满足了一种新的条件,选择性的随机性可恢复性,从而实现了强大的变形扩展,并且我们还为RSA-OAEP提供了强大的变形式扩展。
我们提出了一种新型最弱的微积分,用于对非确定性和概率程序的定量超普罗代理进行推理。现有的计算允许对数量从单个初始状态终止后假定的预期值进行推理,但我们这样做是为初始状态或初始概率分布的集合。因此,我们(i)获得了高hoare逻辑的最弱的前计算,(ii)启用有关所谓的高素质的推理,包括预期值但也包括数量(例如,差异)以前的工作范围。作为副产品,我们为加权程序获得了一个新颖的最强帖子,该职位既扩展了现有的最强和最强的自由主义后的计算。我们的框架揭示了前向和向后变压器之间的新颖二元性,正确性和不正确性以及不终止和不可收拾。
教育1999年,马萨诸塞州哈佛大学剑桥市学士02138应用数学(医学科学)本科论文标题:“昼夜节振荡器的建模” 1999 M.S.哈佛大学艺术与科学研究生院(GSAS)剑桥,马萨诸塞州02138-3654应用数学(医学科学)2003 Ph.D.斯隆州纽约大学生物学系Blau实验室研究员,纽约,纽约,纽约,纽约,1999-299-299-29000摄氏训练前训练者,昼夜节律和呼吸神经生物学,北哈佛大学和女子医院,哈佛大学医学院(NRSA T32)分子生物学
摘要。功能梯度材料 (FGM) 是材料科学和工程领域的一项了不起的发明,它具有独特的性能,可用于各种应用。由于能够逐渐改变材料的成分、微观结构或机械性能等特性,FGM 具有无与伦比的适应性,使其适用于各种高强度应用。制造 FGM 的新方法之一是对粉末材料使用严重塑性变形 (SPD) 技术。粉末的 SPD 涉及几个关键步骤;该过程从选择具有不同成分和相的材料开始,然后混合粉末、冷压、SPD 方法,以及(如果需要)热处理。该过程通过表征和测试完成,以评估最终形成的 FGM 的微观结构和特性。FGM 将继续改变材料工程并推动其在许多工程领域和行业中的应用界限,因为它们表现出提高效率、耐用性和性能等有吸引力的能力。因此,本文探讨了通过 SPD 制造 FGM 的过程,并强调了其在 FGM 生产中的重要性和未来趋势。