中心自 1963 年起聘用他为航空技术专家。目前,作为任务安全与保障办公室设计、分析和故障指标工作的兼职,他负责产品保证管理,并教授课程以协助 NASA 的培训需求。Lalli 先生毕业于凯斯西储大学,获得理学学士学位和理学硕士学位电气工程。1959 年,作为 Case 的研究助理,后来在 PicatinnyArsenal,他帮助开发了电子引信和特殊设备。1956 年至 1963 年,他在 TRW 担任设计、领导和集团工程师。Lalli 先生是俄亥俄州的注册工程师,也是 Eta Kappa Nu、IEEE、IPC、ANSI 和 ASME 的成员。
足够的碎片使电路通电并打开驾驶舱灯。现在有检测器可以自动清除正常磨损颗粒。但是,频繁的自我清除可能表明存在早期问题。因此,清除操作的频率指示(无论是自动的还是飞行员启动的)都将提供有用的诊断信息。基于振动信号分析的更复杂的监测技术也可用,并且可以纳入监测系统。
认识到需要帮助项目经理更好地理解安全和保障技术,Gary G. Kelm、Frank J. Barber 和 Frank J. Barina 编写了附录 B。Kam L. Wong 使用 Charles Ryerson 和 Irwin Quart 提供的信息和概念编写了我们之前的工作簿 RP-1253 的第一章;感谢 North-Holland, Inc. 允许重印部分图表和文本。感谢 Fredrick D. Gregory、Michael A. Greenfield 博士、Peter Rutledge 博士、Vernon W. Wessel 和 Frank Robinson, Jr. 的鼓励和支持,让专业开发团队为我们的 NASA 安全培训课程 017 开发这本新工作簿。Henry A. Malec 已经去世,我们将怀念他。人们将永远记住他为推动可靠性协会所做的努力。他编写了本书原版的第 7、10 和 11 章。Martha Wetherholt 和 Tom Ziemianski 编写了第 8 章和第 9 章。感谢数字设备公司的数字出版社提供第 7 章中的软件评估材料。Vincent R. LaUi,现任美国宇航局格伦研究中心(俄亥俄州克利夫兰)风险管理顾问,编写了一些新章节和附录 C,添加了一些问题,并编辑和负责本手册修订版的最终 NASA 印刷。
传统可靠性评估方法侧重于可靠性预测,而 PoF 方法则关注预防、检测和纠正与产品设计、制造和操作相关的故障。PoF 方法的基础是产品要求的定义,包括在操作和非操作期间暴露于温度、湿度、振动、冲击、腐蚀、辐射和电力等应力,以确定产品可能如何发生故障。然后进行可靠性评估,针对主要故障部位,并确定产品是否能达到预期寿命,或者是否必须采取其他措施来提高其稳健性。
• 如何将 Digifed 在照明、可靠性测试和自动驾驶汽车方面的能力用作项目的一部分,同时利用 DigiFed 合作伙伴来最大化您的提案分数:卓越、影响力、实施质量(45 分钟)
航空燃气涡轮发动机的发展对发动机控制系统提出了越来越高的要求,以提高推力并改善燃油消耗。这些要求导致了电子控制系统的广泛使用。这种系统的早期版本采用了监控概念,于 20 世纪 70 年代推出,目前在运行的许多飞机上都能找到这种系统。目前运行的 JAS 版本采用了这种概念。然而,监控概念并不能完全满足大多数现代发动机的要求,这导致了 20 世纪 80 年代全权数字电子控制 (FADEC) 概念的出现。 FADEC 系统控制发动机所需的所有功能,并引入了许多改进,例如:(i) 可以实施现代控制理论中的复杂技术,这些技术既可以提高性能,又可以提高可靠性,(ii) 由于有限使用流体力学而减轻重量,以及 (iii) 可以实施内置维护支持,从而降低维护成本并提高系统可靠性。正如这些示例所示,FADEC 支持提高性能和可靠性并降低总成本的努力。FADEC 系统目前在许多飞机上运行,例如:新型军用飞机 F-18E/F 和欧洲战斗机以及民用飞机空客 320、321 和波音 777。
会议4:模块制造会议主席:Teresa Barnes,Tristan Erion -Lorico美国制造概述 - Teresa Barnes,Nrel(4:00-4:05)材料选择对玻璃背部模块的材料选择的敏感性Kontopp,Qcells(4:20-4:35)美国模块制造和冰雹抗性模块开发-Hongbin Fang,Longi,Longi(4:35-4:50)小组讨论(4:50-5:20)。
摘要 - 电子产品越来越容易受到硅内能量颗粒相互作用的影响。为了在辐射效应下提高电路可靠性,在VLSI系统的设计流中采用了几种硬化技术。本文提出了逻辑门中的PIN分配优化,以减少单个事件瞬态(SET)横截面并提高轨内软率。信号概率传播用于通过重新交换或引脚交换将最低概率分配给电路最敏感的输入组合。细胞优化的软率最高可降低48%。对于分析的算术基准电路,优化的细胞网列在设置的横截面和轨内软校正速率上可以在电路设计区域内无需成本降低8%至28%。另外,由于引脚交换是一种布局友好的技术,因此优化不会影响细胞放置,并且可以与逻辑和物理合成中的其他硬化技术一起采用。
本手稿提出了一种新型的贝叶斯主动学习可靠性方法,该方法同时整合了贝叶斯故障概率估计和贝叶斯决策理论多点富集过程。首先,提出了一种称为综合边缘概率(IMP)的认知不确定性度量,以作为Kriging估计的失败概率的平均绝对偏差的上限。然后,遵守贝叶斯决策理论,定义了一种称为多点逐步减少(MSMR)的外观学习函数,以量化通过在预期中添加一批新样本来量化IMP的可能减少。基于MSMR的多点富集过程的成本效率实现由三个关键的解决方法进行:(a)由于内部积分的分析性障碍性,MSMR将其减少到单个积分。(b)MSMR中的其余单个积分是通过数值截断的数值计算的。(c)最大化MSMR的启发式治疗方法是根据迭代迅速选择最佳下一个点的一批最佳点,其中使用规定或自适应方案来指定批量大小。在两个基准示例和两个动态可靠性问题上测试了所提出的方法。结果表明,MSMR中的自适应方案在计算资源消耗和整体计算时间之间取得了良好的平衡。然后,根据故障概率估计的准确性,迭代次数以及性能函数评估的数量,尤其是在复杂的动态可靠性问题中,MSMR的表现相当优于现有的倾斜功能和并行化策略。