摘要在过去的二十年中,金属有机框架(MOF)的效用已从催化和气体储存到生物医学应用,例如药物输送。首先,基于MOF的递送平台的重点是传递小分子,目前的工作着重于核酸,例如DNA,短导引导RNA(SGRNA)和简短干扰RNA(siRNA)。迄今为止,没有研究明确表明mRNA与MOF的封装和递送,这可能是由于Messenger RNA的脆弱性(mRNA)。本研究探索并鉴定了与沸石咪唑框架8(ZIF-8)封装和传递mRNA的合成条件。最初的ZIF-8封装尝试虽然能够进行mRNA载荷,但在生物学培养基中不能保持超过1小时的mRNA。为了解决这个问题,我们在矩阵中添加了聚乙烯亚胺(PEI),从而使mRNA保持稳定性4小时。聚乙烯掺杂可以解决ZIF-8中mRNA的泄漏,从而在多种细胞系中递送并产生的蛋白质表达与商业脂质转染试剂相当。此外,我们报告了第一个探索ZIF-8的热稳定mRNA存储的应用程序,并在室温存储3个月后获得了成功的蛋白质表达。一起,这项工作扩大了MOF可以提供的治疗疗法目录。
参考文献 [1] ASE Group,什么是 2.5D?[视频],https://ase.aseglobal.com/en/technology/advanced_25dic (2022) 于 2022 年 7 月 16 日在 https://coms.aseglobal.com/marcom/video/25d-ic 时间戳 1:20 访问。 [2] A. Gupta、Z. Tao、D. Radisic、H. Mertens、OV Pedreira、S. Demuynck、J. Bömmels、K. Devriendt、N. Heylen、S. Wang、K. Kenis、L. Teugels、F. Sebaai、C. Lorant、N. Jourdan、B. Chan、S. Subramanian、F. Schleicher、A. Peter、N. Rassoul、Y. Siew、B. Briggs、D. Zhou、E. Rosseel、E. Capogreco、G. Mannaert、A. Sepúlveda、E. Dupuy、K. Vandersmissen、B. Chehab、G. Murdoch、E. Altamirano Sanchez、S. Biesemans、Z. Tőkei、ED Litta 和 N. Horiguchi,CMOS 埋入式电源轨集成扩展到 3 nm 节点以上,SPIE (2022)。 [3] HSP Wong、K. Akarvardar、D. Antoniadis、J. Bokor、C. Hu、T.-J。 King-Liu、S. Mitra、JD Plummer 和 S. Salahuddin,IEEE 论文集,108, 478 (2020)。 [4] CD Hartfield、TM Moore 和 S. Brand,《微电子故障分析:案头参考》,第 7 版,T. Gandhi 编辑,ASM International (2019)。 [5] BAJ Quesson、PLMJ 诉 Neer、MS Tamer、K. Hatakeyama、MH 诉 Es、MCJM 诉 Riel 和 D. Piras,Proc.SPIE (2022)。 [6] A. Gu、M. Terada 和 A. Andreyev,《计算机分层成像与 3D X 射线显微镜在电子故障分析中的简要比较》,Carl Zeiss Microscopy GmbH [白皮书],(2022 年)。[7] J. Lehtinen、J. Munkberg、J. Hasselgren、S. Laine、T. Karras、M. Aittala 和 T. Aila,《Noise2Noise:无需清洁数据即可学习图像恢复》,《第 35 届国际机器学习会议论文集》,D. Jennifer 和 K. Andreas 编辑,第 2965 页,PMLR,《机器学习研究论文集》(2018 年)。[8] M. Andrew、R. Sanapala、A. Andreyev、H. Bale 和 C. Hartfield,《使用高级算法增强 X 射线显微镜》,《显微镜与分析》,Wiley Analytical Science(2020 年)。 [9] A. Gu、A. Andreyev、M. Terada、B. Zee、S. Mohammad-Zulkifli 和 Y. Yang,载于 ISTFA 2021,第 291 页(2021 年)。[10] IEEE,《2021 年国际设备和系统路线图》,[白皮书],(2021 年)。[11] E. Sperling,《先进封装中的变化制造麻烦》,载于《半导体工程》,[白皮书],(2022 年)。[12] T. Rodgers、A. Gu、G. Johnson、M. Terada、V. Viswanathan、M. Phaneuf、J. de Fourestier、E. Ruttan、S. McCracken、S. Costello、AM Robinson、A. Gibson 和 A. Balfour,载于 ISTFA,第 291 页(2022 年)。 [13] B. Tordoff、C. Hartfield、AJ Holwell、S. Hiller、M. Kaestner、S. Kelly、J. Lee、S. Müller、F. Perez-Willard、T. Volkenandt、R. White 和 T. Rodgers,《Applied Microscopy》,50,24 (2020)。[14] M. Kaestner、S. Mueller、T. Gregorich、C. Hartfield、C. Nolen 和 I. Schulmeyer,《CSTIC,中国》(2019 年)。[15] T. Schubert、R. Salzer、A. Albrecht、J. Schaufler 和 T. Bernthaler,《组合光学显微镜 - FIB/SEM 对汽车车身部件的失效分析》,[白皮书],(2021)。[16] JH Li、QL Li、L. Zhao、JH Zhang、X. Tang、LX Gu、Q. Guo、HX Ma、Q.Zhou, Y. Liu, PY Liu, H. Qiu, G. Li, L. Gu, S. Guo, C.-L. Li, XH Li, FY Wu 和 YX Pan, Geoscience Frontiers, 13 (2022)。[17] V. Viswanathan、L. Jiao 和 C. Hartfield,2021 年 IEEE 第 23 届电子封装技术会议 (EPTC),第 80 页 (2021)。[18] R. Hollman,泛太平洋微电子研讨会 (2019)。[19] M. Tuček、R. Blando、R. Váňa、L. Hladík 和 JV Oboňa,国际失效分析物理学 (IPFA),新加坡 (2020)。
在Tecnalia,Basque研究与技术联盟(BTTA),西班牙b Netzsch Geratebau GmbH,SELB 95100,德国C Cooperativi替代能源研究中心(CIC Energigune),Basque Research and Technology Alliance(BRTA),01510 VITORIIS DEICIRE deitoriia甲虫(CSIC-UPV/EHU)20018 DONOSTIA-SAN SEBASTI´AN,西班牙和建筑和建筑材料研究所,德国Tu Darmstadt,Fentro f centro d de controso de M´Etodos Computaciartiones(CIMEC)(CIMEC),LINL-Conicet,Predio Condio。 “ Alberto Cassano博士”,3000 Santa Fe,阿根廷G实验室DeFlujometría(Flow),FRSF-Upn,Lavaise 610,3000 Santa Fe,Argentina H Graphenea,SA,SA,SA SEBASTIAN,20009年,西班牙Spain I Sphera I Sphera I Sphera I Sphera i Sphera srl,srl,dossobuono,dossobuono UPV/Ehu,Barrio Sarriena S/N,48940,Leioa,西班牙K Donostia International Physics Center(DIPC),Paseo Manuel de Lardizabal 4,20018 Donostia-san Sebasti´an,西班牙,西班牙
• FEOL 采用现成的代工工艺制造集成电路 • BEOL 采用 SoP 制造,具有超薄、灵活和背面功能 • 包括精密电阻器、电容器、电感器 • 能够包含灵活的光子硅波导(美国专利 9,733,428) • 堆叠金属层之间的高密度互连 • 精确的尺寸公差简化了 IC 键合和连接 • 半导体材料与硅 IC 的 CTE 相匹配 • 顶部和底部表面均具有高密度互连
在过去的十年中,锂离子电池的使用显着增加。这些电池现在通常用于所有类型的家庭和商业设备和设备,包括车辆和电子弹药机。F500灭火器适合这些火灾风险,可提供4升和9升尺寸。由于锂离子电池的普及由于快速,方便的重新充电功能而飙升,但人们对潜在的火灾风险越来越关注。
*通讯作者:Z。Bagher,电子邮件:bagher.z@iums.ac.ir **通讯作者:S。Hassanzadeh,电子邮件:hassanzadeh.sa@iums.ac.ims.ac.ir摘要干细胞疗法是软骨组织工程的一种有前途的策略,在最近的研究中,在最近的研究中,细胞通过Polymercercercercercercercercercercercercercercercercercercercecerscaftolds sakaffords a Docations a Docations a Docation。在此,我们封装了硫酸藻酸盐水凝胶中的人脂肪衍生的干细胞(HASC),并添加了模仿软骨结构和特征性的多含素/明胶电纺纳米纤维,并添加了细胞外基质(ECM)粉末。开发了复合水凝胶支架,以评估机械性能,细胞增殖和分化以增强软骨再生的相关因素和条件。最初将不同浓度(1-5%w/v)的ECM粉末加载到硫酸藻酸盐溶液中,以优化封装的HASC可行性的最佳组成。结果表明,ECM添加显着提高了机械性能和细胞活力,并选择了4%w/v ECM作为最佳样品。在下一步中,将电纺纳米纤维层添加到硫酸藻/ECM复合材料中,以准备不同的分层水凝胶纳米纤维(2、3和5层)结构,并能够模仿软骨结构和功能。3层被选为最佳分层复合支架。此外,评估了软骨发生潜力,结果显示了软骨组织工程应用的有希望的特征。关键字:硫酸藻酸盐;干细胞;软骨组织工程;复合支架;水凝胶/纳米纤维
ISSN印刷:2617-4693 ISSN在线:2617-4707 IJABR 2024; 8(3):39-51 www.biochemjournal.com收到:07-01-2023接受:13-02-2023 Meera Mohan Ph.D. Kozhikode, Kerala, India Alfiya PV Crop Production and Post Harvest Technology, ICAR- Indian Institute of Spices Research, Kozhikode, Kerala, India Anees K Crop Production and Post Harvest Technology, ICAR- Indian Institute of Spices Research, Kozhikode, Kerala, India Corresponding Author: Jayashree E Crop Production and Post Harvest Technology, ICAR- Indian Institute of Spices Research, Kozhikode, Kerala,印度
5.1. 用户 I/O................................................................................................................................................ 17 5.2. 电源引脚................................................................................................................................................. 18 5.3. 存储器接口................................................................................................................................................. 19 5.4. DDR 接口................................................................................................................................................. 19 5.5. 时钟引脚................................................................................................................................................. 20 5.6. 专用 I/O 组引脚.................................................................................................................................... 20 5.7. XCVR 接口.................................................................................................................................................... 22
缩小封装上的特征:• 使封装上的特征接近单片 CMOS 芯片顶层的特征 • 将芯片连接到封装的间距接近芯片上的最终通孔间距 • 减少组装在多芯片封装上的芯片之间的距离,以接近单片芯片上 IP 块之间的距离
