摘要:嵌合抗原受体(CAR)T细胞疗法是患有B细胞和浆细胞衍生的血液学恶性肿瘤患者的有前途的治疗选择,并且正在适合治疗固体癌症。然而,CAR T与经常严重的毒性有关,例如细胞因子释放综合征(CRS),免疫效应细胞相关的神经毒性综合征(ICAN),巨噬细胞激活综合征(MAS)和延长的细胞质综合征 - 延长的细胞质 - 一种或多个层中的成熟血细胞数量减少。尽管我们了解这些毒性的一些驱动因素,但它们的机制仍在研究中。由于汽车T方案是一个复杂的多步骤过程,并且经常发生不良事件,因此需要改善利益风险比率的方法。在这篇综述中,我们讨论了正在研究的各种潜在解决方案,以解决CAR T的局限性。首先,我们讨论了与CAR T相关的胞质量的发生率和特征及其与降低的CAR T细胞效率的关联。我们审查了在汽车T方案期间管理或减轻细胞质的方法的方法 - 包括生长因子的使用,同种异体救援,自体造血干细胞输注和替代条件方案。最后,我们引入了新的方法来改善汽车T细胞输注产品以及CAR T和克隆造血的含义。
2017 年,美国食品药品管理局批准了首批 2 种自体 CAR T 细胞疗法 tisagenlecleucel (Kymriah®) 和 axicabtagene ciloleucel (Yescarta®)。2020 年 7 月,FDA 批准了 brexucabtagene autoleucel (Tecartus™)。要将这些产品和其他目前正在开发的产品投入临床实践,各方必须充分了解在癌症患者中使用这些个性化“活”生物制剂的技术和医疗管理。本出版物将解释 CAR T 细胞疗法背后的原理,描述已获批准的疗法,总结迄今为止的疗效结果,详细说明已出现的重大风险,提供实用的医疗管理信息,并强调预期将这种疗法整合到临床实践中所涉及的一些独特挑战。
对于患者开始在开始癌症治疗之前,对自己的医疗和牙科保险范围及其局限性进行教育很重要。例如,传统医疗保险不涵盖常规的牙科护理。一些Medicare Advantage计划包括有限的牙科覆盖范围(请确保阅读精美的印刷品)。在独特的情况下,Medicare可能涵盖牙科服务,例如在去除面部肿瘤时接受某些与JAW相关疾病(例如口腔癌)的放射治疗之前所需的服务(如口腔癌)或重建部分下颌(如有必要)。医疗补助可能会或可能不会涵盖牙科护理,具体取决于您的州。患者应与医疗和牙科团队分享他们的财务问题,并找出是否有任何财务资源。有关能够提供帮助的组织,请参见第9-10页的其他资源。
自从批准了多种针对非霍奇金淋巴瘤 (NHL) 的 CD19 靶向嵌合抗原受体 T 细胞 (CAR-T) 疗法以来,治疗手段得到了显著扩展。这些 CAR-T 是针对特定患者的,需要复杂、耗费资源和时间的过程。虽然这看起来很有希望,但由于缺乏可及性、制造延迟和产品质量不稳定,自体 CAR-T 受到限制。为了克服这些问题,来自健康捐赠者的同种异体 (allo) CAR 似乎很有吸引力。这些可以立即作为标准化和优质“现成”即用型产品提供,不受免疫抑制肿瘤微环境和先前治疗的影响,并且可能通过工业化规模生产降低医疗保健利用率。然而,同种异体 CAR 并非没有并发症,需要进行基因组编辑,尤其是使用 αβ T 细胞以避免移植物抗宿主病 (GvHD) 和受体免疫系统的同种异体排斥。TALEN 和 CRISPR 等基因组编辑工具有望开发真正“现成的”通用 CAR,并进一步推动细胞免疫治疗领域的发展。目前有几种同种异体 CAR 处于早期临床试验阶段,初步数据令人鼓舞。需要更长时间的随访才能真正评估这些技术对患者的可行性和安全性。本综述重点介绍开发同种异体 CAR 的策略以及迄今为止在淋巴瘤中的细胞来源和临床经验。
前两种自体 CAR-T 细胞疗法 tisagenlecleucel (Kymriah®) 和 axicabtagene ciloleucel (Yescarta®) 于 2017 年获得美国食品药品管理局批准。2020 年,FDA 批准了 brexucabtagene autoleucel (Tecartus TM )。Lisocabtagene maraleucel (Breyanzi®) 和 idecabtagene vicleucel (Abecma®) 于 2021 年获得批准。Ciltacabtagene autoleucel (Carvykti TM ) 于 2022 年 3 月获得批准。这些产品和其他目前正在开发的产品要投入临床实践,需要各方充分了解在癌症患者中使用这些个性化“活”生物制剂的技术和医疗管理。本出版物将解释 CAR T 细胞疗法背后的原理,描述已批准的疗法,总结迄今为止的疗效结果,详细说明已出现的重大风险,提供实用的医疗管理信息,并强调该疗法预期融入临床实践所涉及的一些独特挑战。
T细胞修饰,对B细胞恶性肿瘤的治疗表现出了巨大的希望。成功地将CAR-T细胞疗法转化为其他肿瘤类型(包括实体瘤)是下一个重大挑战。随着构成多种遗传修饰的第二代CAR-T细胞的领域进展,正在开发更复杂的方法和工具。病毒载体,尤其是C返回病毒和慢病毒,由于其高转导效率而被用于CAR -T细胞工程。但是,有限的遗传货物,良好的制造实践(GMP)条件下的高生产成本以及高监管要求是广泛临床翻译的障碍。为了克服这些局限性,正在临床前或临床水平探索不同的非病毒方法,包括转座子/转座酶系统以及mRNA电穿孔和非整合DNA纳米摩析器。基因组编辑工具,允许对特定基因的有效敲除和/或将汽车和/或其他转基因的站点指导整合到基因组中进行,也正在评估用于CAR-T细胞工程。在这篇综述中,我们讨论了用于产生CAR-T细胞的病毒和非病毒载体的发展,重点是它们的优势和局限性。我们还使用不同的基因工程工具讨论了从临床试验中学到的经验教训,并特别关注安全性和有效性。
• Adstiladrin (2022) • Vyjuvek (2023) • Elevidys (2023) • Roctavian (2023) • Lyfgenia (2023) • Casgevy (2023, 2024) • Lenmeldy (2024) • Beqvez (2024) • Tecelra (2024) • Aucatzyl (2024) • 科比利迪 (2024)
缩写:ASCT,自体干细胞移植; BCMA,B细胞成熟抗原; B7-H3,B7蛋白质同源物3;汽车,嵌合抗原受体; CEA,癌脑抗原; DLBCL,弥漫性大B细胞淋巴瘤; EBV,爱泼斯坦 - 巴尔病毒; GBM,胶质母细胞瘤多形; GP120,包膜糖蛋白120; Haart,高度活跃的抗逆转录病毒疗法; LMP1,潜在膜蛋白1; MM,多发性骨髓瘤; MUC1,细胞表面相关的粘蛋白1; NHL,非霍奇金淋巴瘤; NPC,鼻咽癌; NSCLC,非小细胞肺癌; r/r,复发/难治; SOC,护理标准。
Etanercept(Enbrel)是五个商业上可用的肿瘤坏死因子(TNF) - α抑制剂之一,不将生物仿制药视为单独的产品,在美国可用,并于1998年11月获得批准。肿瘤坏死因子,通过刺激炎症介质和信号免疫细胞的产生来引发人体对局部损伤的防御反应。TNF在低浓度时可能会增加宿主防御机制,但是大量TNF会导致过度的炎症和组织恶化。在类风湿关节炎中,活化的T细胞迁移到释放TNF并开始关节破坏的关节的滑膜内。与健康个体相比,来自克罗恩病或溃疡性结肠炎患者的肠粘膜与高水平的TNF有关。牛皮癣患者也证明了TNF的类似升高。
mzl(60)初级耐火(%)17 8次级抵抗(%)43 30 CD19-CD19阴性复发(%)27 0(0/13)中位数(0/13)中位数(月份)11.1未达到12个月的12个月71.7%在12个月(12个月)未达到12个月(12个月)5个月(12个月)5个月(12个月7%)7%(%)42%的pfs(%)42%(%)42%42%(%)42%42%(%)42%。在12个月时在12个月时未达到OS(%)60%,在12个月时与扩张(y/n)y y与持久性(y/n)N NA毒性Cr crs分级Lee Scale Crs crs crs 1-2(%)80 75 CR 3-4(%)3-4(%)13