摘要:多西他赛 (DTX) 广泛用于治疗非小细胞肺癌 (NSCLC) 患者,但存在剂量限制性副作用,尤其是神经毒性和骨髓抑制。在此,我们开发了环状 cNGQGEQc 肽导向聚合物囊体多西他赛 (cNGQ-PS-DTX),作为 NSCLC 的靶向多功能制剂。携带 8.1 wt % DTX 的 cNGQ-PS-DTX 尺寸为 93 nm,表面电荷为中性,稳定性高,并具有谷胱甘肽触发的 DTX 释放行为。细胞毒性研究表明,cNGQ-PS-DTX 在过表达 α 3 β 1 整合素的 A549 人肺癌细胞中的抗肿瘤活性明显优于游离 DTX 和非靶向 PS-DTX。cNGQ-PS-DTX 在小鼠中表现出非常高的耐受性(比游离 DTX 好 8 倍以上)和缓慢消除。重要的是,与 PS-DTX 和游离 DTX 对照相比,cNGQ-PS-DTX 表现出显著改善的肿瘤蓄积和更高的皮下和原位 A549 异种移植抑制率。α 3 β 1 整合素靶向聚合物囊泡多西紫杉醇成为治疗 NSCLC 的先进纳米治疗剂。关键词:肺癌、聚合物囊泡、多西紫杉醇、化疗、靶向递送
3校长,晚母猪。Kamaltai Jamkar Mahila Mahavidyalaya,Parbhani。商学院 - SRTM University,NANDED-印度基于基于资源的观点理论的摘要,这项研究研究了供应链集成(内部,客户和供应商集成)如何影响公司的绩效。使用经验研究方法,通过97名经理和也门制药公司员工的问卷收集数据,以评估SCI对公司绩效的影响。通过使用SPSS和SMARTPLS软件分析数据,研究结果表明,内部和客户集成显着影响公司的性能,而供应商集成并未显示出显着效果。该研究为公司提供了见解,这些公司可以通过在其生产和营销过程中有效实施内部,客户和供应商的集成来提高其整体绩效。此外,SCI促进了直接沟通,并与客户和供应商的关系更牢固,最终导致提高效率和竞争力。关键字:供应链集成(SCI),内部集成(II),客户集成(CI),供应商集成(SI),公司绩效(FP)和基于资源的视图(RBV)。1。引言供应链集成(SCI)对于确保长期组织成功至关重要(Huo等,2014)。要保持竞争力,企业必须与供应商和客户紧密合作,以促进牢固的合作伙伴关系。SCI涉及制造商与供应链合作伙伴之间的战略协调,以优化整个供应链中的内部和外部资源和能力(Flynn等,2010)。一起运行时,供应链成员可以提高绩效,提高盈利能力并有效地满足客户需求(Kumar等,2017)。被认为是获得竞争优势的关键因素,SCI已被证明会显着影响公司的运营效率和财务绩效(Devaraj等,2007; Hendijani&Saeidi Saei 2020)。在当今的商业格局中,诸如采购原材料,管理库存和分销商品之类的任务不再局限于各个组织中,而是转向更广泛的供应
要通过分子方法研究海洋环境中的微生物群落,重要的是要以足够的量和纯度提取DNA。样品中抑制剂的存在可能导致虚假的阴性结果或信息丢失,但可以通过实验中的过程控制来突出显示。我们比较了海洋样品上的七种细菌DNA提取方法:鱼皮,g和胆量,软体动物肉,浮游植物和浮游动物。在一半的样品中添加了一个过程控制(单核细胞增生李斯特菌)。比较了DNA提取方法的性能,以产生针对细菌TUF基因和过程控制Hlya基因的QPCR扩增的更纯和浓缩的DNA。通过分光光度法测定测定DNA的纯度和浓度。结果表明,使用PowerBiofilm和Purelink微生物组试剂盒获得了最高纯度和浓度DNA。QPCR数据证实了这些试剂盒以更高的扩增效率产生了更好的细菌DNA纯度和浓度。在某些样品中,通过靶向Hlya基因的QPCR检测到抑制剂的存在,表明样品是被抑制剂污染的异质性。DNA提取物适用于海洋环境中的遗传下游应用。
摘要对可持续能源的过渡需要不断改进太阳能光伏(PV)技术,以提高效率,可靠性和可伸缩性。最大功率点跟踪(MPPT)算法通过动态调整操作参数以最大化能量产量来优化PV系统性能,在优化PV系统性能方面起关键作用。但是,传统的MPPT技术通常无法对快速环境波动有效响应,从而导致能源损失。本研究提出了一种创新的MPPT优化制造方法,该方法整合了高级半导体材料,智能电力电子和AI驱动的预测算法。此外,该研究强调了将这些技术进步与强大的政策框架保持一致的重要性,从而促进网格整合,经济激励和对高效太阳能PV部署的监管支持。使用叙事综述方法,本文综合了PV制造,AI增强MPPT系统和能源政策的最新进展。这些发现突出了将下一代PV技术与自适应MPPT机制相结合的协同影响,这证明了它们有可能显着提高能量转化效率和网格弹性的潜力。该研究得出结论,结合技术创新和政策支持的整体方法对于实现可持续且经济上可行的太阳能过渡至关重要。关键字:MPPT,优化的制造,太阳能光伏,政策,可持续能源
摘要 - 动态场景中的移动对象细分(MOS)是一个重要的,具有挑战性但探索不足的重新搜索主题,以供自动驾驶,尤其是对于从移动的自我车辆获得的序列而言。大多数分割方法利用了从光流图获得的运动提示。但是,由于这些方法通常是基于从连续的RGB框架中预先计算的光流,因此这忽略了对间框架内发生的事件的时间考虑,因此限制了其识别其表现出相对静态性但在运动中确实在运动中表现出相对静态物体的能力。为了解决这些局限性,我们建议利用事件摄像机以更好地理解视频,从而在不依赖光流的情况下提供了丰富的运动提示。为了培养该领域的研究,我们首先引入了一个名为DSEC-MOS的新型大型数据集,用于从移动自我车辆中移动对象进行分割,这是同类的第一个。为了进行基准测试,我们选择了各种主流方法,并在我们的数据集上严格评估它们。随后,我们设计了一种能够利用事件数据的新型网络。为此,我们将事件的临时事件与空间语义图融合在一起,以区分真正的移动对象和静态背景,并围绕着我们感兴趣的对象增加了另一个密集的监督。我们提出的网络仅依靠用于培训的事件数据,但在推理过程中不需要事件输入,从而使其直接与仅限框架方法相媲美,并且在许多应用程序情况下都可以使用更广泛的使用。源代码和数据集可公开可用:https://github.com/zzy-zhou/dsec-mos。详尽的比较突出了我们方法对所有其他方法的显着性能提高。
排放如果有效使用(Eurostat,2017年)。如今,生产的能源的大约7%来自可再生能源(Ren21,2016)。 由于全球对碳相关环境问题的认识以及绿色技术和政府支持可再生能源部门的努力的份额不断增长,预计该价值将在未来几年增长。 但是,考虑到RES的间歇性特征,可再生能源产生的比率增加可能会导致电网中的几个问题。 实际上,它的发电部门在当地受到天气模式(IEC,2011年)和白天/夜间周期的影响。 因此,使用电能量存储(EES)被视为支持可变res集成的一种潜在方法(Luo等,2015)。 EES系统还可以提供其他有用的服务,例如剃须,负载转移和支持智能电网的实现(Luo等,2015)。 在对2030年的电力储存路线图研究中,如果各国在能源系统组合中的可再生能源份额增加一倍,则电力存储设施往往会增加三倍(Irena,2017年)。 ees不是一项技术,而是指技术的投资组合。 可以根据能量转换和存储来对能量存储进行分类。 主要用于大规模的能量存储(Irena,2017)。 抽水储存(PHS)在2017年中期全球安装的电气存储容量为96%,并以平流和压缩空气的空气储能技术(IEC; IRENA,2017)。如今,生产的能源的大约7%来自可再生能源(Ren21,2016)。由于全球对碳相关环境问题的认识以及绿色技术和政府支持可再生能源部门的努力的份额不断增长,预计该价值将在未来几年增长。但是,考虑到RES的间歇性特征,可再生能源产生的比率增加可能会导致电网中的几个问题。实际上,它的发电部门在当地受到天气模式(IEC,2011年)和白天/夜间周期的影响。因此,使用电能量存储(EES)被视为支持可变res集成的一种潜在方法(Luo等,2015)。EES系统还可以提供其他有用的服务,例如剃须,负载转移和支持智能电网的实现(Luo等,2015)。在对2030年的电力储存路线图研究中,如果各国在能源系统组合中的可再生能源份额增加一倍,则电力存储设施往往会增加三倍(Irena,2017年)。ees不是一项技术,而是指技术的投资组合。可以根据能量转换和存储来对能量存储进行分类。主要用于大规模的能量存储(Irena,2017)。抽水储存(PHS)在2017年中期全球安装的电气存储容量为96%,并以平流和压缩空气的空气储能技术(IEC; IRENA,2017)。传统的抽水储存系统在不同的高程下使用两个水库,并且挤压空气技术需要地下储物腔,例如
摘要 - 我们提供了一个混合脑机界面(BMI),该界面(BMI)整合了基于视觉诱发电位(SSVEP)的脑电图和面部EMG,以改善多模式控制并减轻辅助应用中的疲劳。传统的BMI仅依赖于脑电图或EMG具有固有的局限性 - 基于EEG的控制需要持续的视觉焦点,导致认知疲劳,而基于EMG的控制会随着时间的流逝引起肌肉疲劳。我们的系统在脑电图和EMG输入之间动态交替,使用EEG检测9.75 Hz的SSVEP信号,以及从脸颊和颈部肌肉中检测到14.25 Hz和14.25 Hz和EMG,以根据任务需求优化控制。在虚拟乌龟导航任务中,混合系统达到了与仅EMG的方法相当的任务完成时间,而90%的用户报告说减少或相等的物理需求。这些发现表明,多模式BMI系统可以增强可用性,减少应变并改善辅助技术的长期依从性。索引术语 - 基于EEG的接口,EMG处理和应用,脑机界面
摘要将纳米材料和工业废物整合到电磁干扰(EMI)屏蔽复合材料中代表了针对现代基础设施挑战的可持续和高效解决方案的有希望的途径。本文讨论了这些材料如何改善,重点是纳米颗粒和可回收的工业废物,使它们能够改善EMI屏蔽。此外,还详细阐述了电信,防御和电子设备等EMI屏蔽复合材料的关键应用。详细解释了CE MET CYNCRETE和基于砂浆的EMI复合材料的机械和微观结构特性。本文还研究了以更大的规模和降低的成本以及未来发展的可能性生产这些材料的挑战。最终,这项工作有助于开发高性能的EMI复合材料,这些复合材料是通过将支持可持续结构的废物最小化的,使用对生态友好的材料开发的。
在偏远岛屿或孤立地区等未联网地区,大规模整合太阳能可再生能源是一项挑战。事实上,这些地区的电网无法依赖大型电网的支持,更容易受到太阳能资源固有波动性和电网故障(如生产单元或输电线路突然故障)的影响。欧盟委员会资助的 TwInSolar 项目旨在提供支持和解决方案,以克服未接入大陆电网的岛屿地区面临的问题。作为该项目的一部分,向科学界介绍了四个研究案例,每个案例都强调了在留尼汪岛不同规模上观察到的具体问题。本文旨在详细描述四个选定的系统、相应的挑战以及可用的数据。
慢性疼痛影响全球大约30.3%的成年人,提出了一个重大的全球健康问题,严重影响了个人的生活质量并带来了重大的社会经济挑战。传统的疼痛管理方法,例如物理疗法和药理治疗,主要集中于疼痛的生物学方面,同时经常忽略心理和社会因素。然而,神经科学的最新进展表明,慢性疼痛受到中枢神经系统的变化的影响,包括中枢敏化和神经可塑性等机制。本文研究了当代神经科学知识的干预措施,包括疼痛神经科学教育(PNE),正念实践和认知功能疗法(CFT),这些疗法(CFT)针对这些神经生物学变化,以改善疼痛感知和行为。这些干预措施有助于恢复大脑的疼痛途径,促进长期缓解疼痛和功能恢复。此外,将基于神经科学的方法与常规疗法结合起来可增强治疗结果。这项工作强调了对个性化方法的需求以及新兴技术的整合,以增强慢性疼痛管理的可及性和有效性。