摘要 - 这项工作是解决量子仪器的数据驱动建模问题并启用模型可以解释的。首先,提出了一种数据驱动的物理迭代(DPI)建模方法来解决具有基于现象学速率方程描述的量子系统的动态行为的复杂物理系统的建模问题。第二,提出的DPI建模方法结合了快速采样技术,该技术被泰勒平均值定理证明是可行的,以解决非自治系统的建模问题。第三,最小二乘标准和大量法则证明了所提出的方法的融合。最后,将DPI建模方法部署在光学泵送磁力计(OPM)和自旋交换宽松量表(SERFCM)中,在完成量子仪器建模的同时,估算了系统的物理参数。数值模拟和实际实验支持理论结果。
摘要在精确导航方面的最新进展已广泛利用全球导航卫星系统(GNSS)和惯性导航系统(INS)的集成,尤其是在智能车辆的领域。然而,这种导航系统的功效被非光(NLOS)信号的反射和多径中断所损害。基于积极的感知传感器以其精确的3D测量而闻名的基于主动感知的传感器的光检测和范围(LIDAR)的探测器在增强导航系统方面已经变得越来越普遍。尽管如此,与GNSS/INS系统的激光雷达进气量同化列出了重大挑战。应对这些挑战,这项研究引入了两相传感器融合(TPSF)方法,该方法通过双阶段传感器融合过程协同结合了GNSS定位,激光镜和IMU预融合。初始阶段采用扩展的Kalman滤波器(EKF)与IMU机械化合并GNSS解决方案,从而促进了IMU偏见和系统初始化的估计。随后,第二阶段将扫描到映射激光雷达的进程与IMU机械化相结合,以支持连续的LiDAR因子估计。然后将因子图优化(FGO)用于liDar因子,IMU预融合和GNSS解决方案的全面融合。通过对城市化开源数据集的苛刻轨迹进行严格的测试来证实所提出的方法的功效,与最先进的算法相比,该系统表明性能的增强,可实现1.269米的翻译标准偏差(STD)。
摘要:分销网络中可再生能源资源(RER)的增加集成形成了网络可再生能源资源(NRERS)。合作对等(P2P)控制体系结构能够充分利用NRER的韧性和灵活性。本研究提出了一个多代理系统,以实现基于NRER的物联网(IoT)的P2P控制。控制系统已完全分布,并包含在每个RER代理中操作的两个控制层。对于主要控制,每个RER-ANTENT都采用下垂控制,以用于本地功率共享。对于二级控制,提出了分布式扩散算法以在RER之间进行任意幂共享。实施了建议的级别通信系统来解释分布网络系统和云服务器之间的数据交换。本地通信级别利用Internet协议(IP)/传输控制协议(TCP),消息排队遥测传输(MQTT)用作全球通信级别的协议。通过修改IEEE 9节点测试馈线的数值仿真来验证所提出系统的有效性。本文提出的控制器为该系统节省了20.65%的节省,光伏25.99%,柴油发电机的35.52节省为35.52,电池24.59,功率损失为52.34%。
可用于治疗牛皮癣的当前生物制剂包括肿瘤坏死因子(TNF) - α抑制剂,白介素(IL)-12 /IL-23抑制剂,IL-17抑制剂和IL-23抑制剂。11这些治疗中的许多也用于管理PSA症状和进展。12当前用于银屑病疾病治疗的小分子包括磷酸二酯酶(PDE)抑制剂,例如Apremilast和Janus激酶(JAK)抑制剂,例如Tofacitinib,而老年剂包括甲氨蝶呤,丙替型,丙替型和环孢素。正在研究牛皮癣的3种腺苷受体激动剂,例如CF101。11通常,这些小分子可下调促炎性细胞因子,从而显着导致牛皮癣。尽管有这些治疗选择,但探索新型的治疗机制仍具有推进现场的潜力。
1工程与技术大学计算机科学系,Taxila 47050,巴基斯坦; momina.masood@uettaxila.edu.pk(M.M. ); tahira.nazir77@gmail.com(T.N. ); marriam.nawaz@uettaxila.edu.pk(M.N。 ); awais.mehmood@uettaxila.edu.pk(A.M. toqeer.mahmood@yahoo.com 5数据科学与网络分析研究小组,爱丁堡纳皮尔大学,爱丁堡EH11 4DY,英国; a.hussain@napier.ac.uk *通信:junaidrashid062@gmail.com(J.R.); hyukyoon.kwon@seoultech.ac.kr(h.-y.k.)1工程与技术大学计算机科学系,Taxila 47050,巴基斯坦; momina.masood@uettaxila.edu.pk(M.M.); tahira.nazir77@gmail.com(T.N.); marriam.nawaz@uettaxila.edu.pk(M.N。); awais.mehmood@uettaxila.edu.pk(A.M. toqeer.mahmood@yahoo.com 5数据科学与网络分析研究小组,爱丁堡纳皮尔大学,爱丁堡EH11 4DY,英国; a.hussain@napier.ac.uk *通信:junaidrashid062@gmail.com(J.R.); hyukyoon.kwon@seoultech.ac.kr(h.-y.k.)
保留所有权利。未经许可就不允许重复使用。(未经同行评审证明)是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。
可用于治疗牛皮癣的当前生物制剂包括肿瘤坏死因子(TNF) - α抑制剂,白介素(IL)-12 /IL-23抑制剂,IL-17抑制剂和IL-23抑制剂。11这些治疗中的许多也用于管理PSA症状和进展。12当前用于银屑病疾病治疗的小分子包括磷酸二酯酶(PDE)抑制剂,例如Apremilast和Janus激酶(JAK)抑制剂,例如Tofacitinib,而老年剂包括甲氨蝶呤,丙替型,丙替型和环孢素。正在研究牛皮癣的3种腺苷受体激动剂,例如CF101。11通常,这些小分子可下调促炎性细胞因子,从而显着导致牛皮癣。尽管有这些治疗选择,但探索新型的治疗机制仍具有推进现场的潜力。
基于癌症基因组图集(TCGA)的Stad转录组数据和临床谱,我们通过共表达和差分分析确定了与线粒体相关的LNCRNA。与COX回归合作的最低绝对收缩和选择操作员(LASSO)算法被用来构建风险signatus,然后将患者分为高风险和低风险基团。通过就使用Kaplan-Meier生存分析,接收器操作特征(ROC)曲线分析,独立的预后分析来评估签名的预后性能。此外,使用KEGG,GO和GSEA分析来阐明与风险特征相关的生物学功能。最后,还研究了与该特征有关的肿瘤微环境,药物敏感性和肿瘤突变负担(TMB)。
癌症生长[17]。 我们怀疑MM细胞中DCG066诱导的凋亡模式与甲状腺毒作用有关,因此我们预先处理了ARH-77和RPMI-8226细胞具有氧化肌毒化抑制剂(FER-1)的RPMI-8226细胞,并通过添加DCG0666666666的诱导剂,并通过添加了MOSTBIDEBSBIDEBSBIDED。 我们发现,与单独的MM细胞中的DCG066处理组相比,Erastin和Fer-1能够很好地逆转和促进DCG066诱导的凋亡(图癌症生长[17]。我们怀疑MM细胞中DCG066诱导的凋亡模式与甲状腺毒作用有关,因此我们预先处理了ARH-77和RPMI-8226细胞具有氧化肌毒化抑制剂(FER-1)的RPMI-8226细胞,并通过添加DCG0666666666的诱导剂,并通过添加了MOSTBIDEBSBIDEBSBIDED。我们发现,与单独的MM细胞中的DCG066处理组相比,Erastin和Fer-1能够很好地逆转和促进DCG066诱导的凋亡(图4a,p <0.001)。随后,用不同浓度(0,3 µm,5 µm,8 µm)的DCG066对ARH-77和RPMI-8226细胞进行处理,效力诱变的主要调节剂的蛋白质水平(GPX4和SCL7A11)(GPX4和SCL7A11)分析了GPX11的蛋白质水平。 DCG066浓度(图4b)。因此,我们假设DCG066导致MM
1 4.4 N.D. N.D. 72 99.3 147.7 31.8 A- <1 a -2 3.3 14.8 n.d. 54 93.4 1109.4 47.6 a,b 50.3 1.3 a,b 1.5 3 2.8 76.3 133 133 17 7.6 173 19.3 99 39.8 34.2 45.1 38.8 25.2 21.6 7 2.6 24.0 n.d. 117 54.8 62.2-36.2 - 8 3.0 34.7 n.d. 61 43.5 26.2 53.2 C -51.3 C -9 2.0 36.5 n.d. 108 58.8 16.3-40.3--10 1.3 35.4 n.d. 346 <1 12.8 71.0 11.7 7.2 28.0 11 28.0 11 2.0 34.5 50.8 62 31.7 8.4 35.6 C 51.8 35.3 C 35.3 C 35.7 12 1.0 33.7 20.7 20.5 24 47.3 17.4 11.4 11.1 C 56.9 20.7 C 56.9 20.7 C 25.7 C 25.0 13 3.6 34.8 34.8 13 3.6 34.8 13 3.6 34.8 14 38 14 38 38 38 38 38 67.5 67.5 67.5 67.5 67.5 67.5 67.5 17.5 67.5 67.5 67.5 67.5 67.5 17.5 19.c. 15.0 2.4 35.3 14 2.0 60.1 51.8 138 34.3 12.2 107 18.4 19.0 48.7 15 0.3 15 0.3 160 N.D. 245 51.8 13.0 N.C. A 23.3 4.6 A 37.7 16 2.6 22.0 n.d. 50 50.1 14.9 19.3 c 23.7 10.2 c 57.2 CMX990 2.3 23.4 9.6 101 56.3 7.5 125 23.0 14.5 52.8 Nirmatrelvir 1.5 28.1 44.8 148 54.8 21.8 35.8 1.92 53.5 68.7 PF-00835231 1.2 101 81.4 630 77.2 13.9 86.4-1.0- a =仓鼠,B =近距离类似物的数据,C =大鼠EC 90 = 90%有效浓度,Cl int =固有清除率,Clp =血浆清除率,F =生物利用度,HLM =人肝微染色体,HPPB = HPPB = HUMEN PLASMA蛋白质结合,IV = IV = IV = inv = intravenos,iv = intravenous,n. n。 =未确定,N.C。 =未计算,po = per per os(oral)1 4.4 N.D. N.D. 72 99.3 147.7 31.8 A- <1 a -2 3.3 14.8 n.d. 54 93.4 1109.4 47.6 a,b 50.3 1.3 a,b 1.5 3 2.8 76.3 133 133 17 7.6 173 19.3 99 39.8 34.2 45.1 38.8 25.2 21.6 7 2.6 24.0 n.d. 117 54.8 62.2-36.2 - 8 3.0 34.7 n.d. 61 43.5 26.2 53.2 C -51.3 C -9 2.0 36.5 n.d. 108 58.8 16.3-40.3--10 1.3 35.4 n.d. 346 <1 12.8 71.0 11.7 7.2 28.0 11 28.0 11 2.0 34.5 50.8 62 31.7 8.4 35.6 C 51.8 35.3 C 35.3 C 35.7 12 1.0 33.7 20.7 20.5 24 47.3 17.4 11.4 11.1 C 56.9 20.7 C 56.9 20.7 C 25.7 C 25.0 13 3.6 34.8 34.8 13 3.6 34.8 13 3.6 34.8 14 38 14 38 38 38 38 38 67.5 67.5 67.5 67.5 67.5 67.5 67.5 17.5 67.5 67.5 67.5 67.5 67.5 17.5 19.c. 15.0 2.4 35.3 14 2.0 60.1 51.8 138 34.3 12.2 107 18.4 19.0 48.7 15 0.3 15 0.3 160 N.D. 245 51.8 13.0 N.C. A 23.3 4.6 A 37.7 16 2.6 22.0 n.d. 50 50.1 14.9 19.3 c 23.7 10.2 c 57.2 CMX990 2.3 23.4 9.6 101 56.3 7.5 125 23.0 14.5 52.8 Nirmatrelvir 1.5 28.1 44.8 148 54.8 21.8 35.8 1.92 53.5 68.7 PF-00835231 1.2 101 81.4 630 77.2 13.9 86.4-1.0- a =仓鼠,B =近距离类似物的数据,C =大鼠EC 90 = 90%有效浓度,Cl int =固有清除率,Clp =血浆清除率,F =生物利用度,HLM =人肝微染色体,HPPB = HPPB = HUMEN PLASMA蛋白质结合,IV = IV = IV = inv = intravenos,iv = intravenous,n. n。 =未确定,N.C。 =未计算,po = per per os(oral)