神经普通微分方程(神经odes)是一个深层神经网络的新家族。本质上,神经极是一个微分方程,其向量场是神经网络。将神经颂作为机器学习模型的一部分,使该模型比标准模型更有效。的确,可以使用伴随灵敏度方法来训练模型的神经ode块,该方法计算梯度下降方法的梯度,以避免经典的反向传播的计算成本。我们对这一领域的贡献是对神经ode块的稳定性和合同性的研究,是一个微分方程,目的是设计训练策略,以使整体机器学习模型稳健且稳定,以抗对抗攻击。此海报基于[1],[2]和[3]。
在本文中,基于离子电活性聚合物(IEAP)的三层微型激活器的电响应考虑了在微实施行为中出现的某些现象。分析了对充电和排放过程中测得的电流的详细研究。研究了简化的等效电路的电荷,时间构成,电容和电阻。结果表明,微型演员表现出低于1 V的施加电压的线性行为。除此之外,非线性出现并与放电过程有关,尤其是以非线性方式增加的相应电阻。在此阶段,取决于先前施加的电压的累积电荷在放电过程中未完全恢复。这项研究的结果通过实验和理论结果进行了说明。
摘要:铯134和-137在核事故期间普遍存在,长期寿命,可射线毒性污染物释放到环境中。在福岛daiichi核事故期间,大量不溶性,可呼吸CS的微粒(CSMP)释放到环境中。对环境样品中CSMP的监测对于了解核事故的影响至关重要。用于筛选CSMP的当前检测方法(磷光筛查放射自显影)慢效。我们提出了一种改进的方法:使用平行电离乘数气态检测器的实时放射自显影术。该技术允许对放射性的空间解决测量值,同时从空间异质样品中提供光谱数据,一种潜在的级别变化技术,可用于核事故后用于法医分析。使用我们的检测器配置,可检测到CSMP的最小可检测活动足够低。此外,对于环境样品,样品厚度不会对检测器信号质量造成不利影响。检测器可以测量和解决相距≥465μm的单个放射性颗粒。实时放射自显影是放射性颗粒检测的有前途的工具。
Roman Römisch、Stefan Jestl 和 Ambre Maucorps 是维也纳国际经济研究所 (wiiw) 的经济学家。本文的研究由奥地利国民银行周年基金资助(项目编号 17796)。衷心感谢奥地利国民银行为本研究提供的支持。
摘要。高温超导体(HTS)非常有吸引力的高效和高能量密度功率设备。它们与需要轻型和紧凑型机器(例如风力发电)的应用特别相关。在这种情况下,为了确保超导器机器的正确设计及其在电力系统中的可靠操作,那么开发可以准确包含其物理功能但也可以正确描述其与系统的相互作用的模型很重要。为了实现这样一个目标,一种方法是共同模拟。这种数值技术可以通过有限元模型(FEM)带来机器的细几何和物理细节,同时处理整个系统的操作,该系统包含了机器,以及由外部电路代表的电网的子集。当前工作的目的是在涉及超导组件时使用这种数值技术。在这里,提出了一个案例研究,该案例研究涉及通过整流器及其相关滤波器与直流电流(DC)网络耦合到直流电流(DC)网络的15 MW杂交超导同步发电机(HTS转子和常规定子)。与风能应用有关的案例研究允许在使用与HTS机器的共同模拟时抓住技术问题。发电机的FEM是在商用软件COMSOL多物理学中完成的,该商品通过内置功能模拟单元(FMU)与电路模拟器Simulink进行交互。因此,它是在本研究中,引入了最新版本的最新版本J-与均化技术结合使用的配方,与T -A公式相比,计算时间更快。分布式变量和全局变量,例如前者和电压,电流,电磁扭矩以及后者的功率质量的电流密度,磁通量密度和局部损失,并进行了比较。这个想法是在计算速度,准确性和数值稳定性的标准下找到最适合的组合FEM电路。
自适应网状修复基于基本要素:后验估计。在中子中,后验错误控制是一个正在进行的研究主题。AMR。在[16,第3.3节]中,作者解决了A后验估计中使用的规律性假设的问题。在[21,22,25]中,A后验估计值基于双重加权残差方法,其中保证的估计器涉及确切的伴随溶液。在[17]中,他们设计了一个可靠的估计,该估计依赖于双重问题的定义,并突出了由于这个双重问题缺乏稳定性而缺乏效率。严格的估计值不需要过剩的规律性以及适应性网格重新确定策略,以解决运输方程式上的源问题[9]。在这项工作之后,[10]中已经解决了有关特征值问题的理论方面。在这些论文中,作者设计了一种数值策略,该策略依赖于精确控制的操作员评估,例如在[9]中用于解决源问题。在反应堆核心尺度上,使用简化的模型在核工业中很常见。准确地说,简化的模型可以是中子分歧模型或简化的传输模型。在[7]中,我们对中子差异方程的混合有限元离散量进行了严格的后验误差估计,并提出了一种自适应网格重新填充策略,以保留Carte-sian结构。在[13]中执行了这种方法对临界问题的第一个应用,尽管具有次级估计器。关于工业环境和特定的数字模拟,我们的方法是在Apollo3®代码[23]中开发混合有限元求解器[4]的一部分。
课程描述MAP2302 |简介微分方程| 3.00学分本课程强调了普通的微分方程,一阶线性和非线性方程和应用的解决方案方法;具有恒定系数,差分操作员方法,高阶线性方程的均匀和非均匀线性方程;拉普拉斯变换及其属性,基本存在定理,串联解决方案,一阶方程的数值解决方案,初始和边界价值问题,振动和波浪以及自主系统的介绍。计算课程。
本文考虑了仅在达到某些最终状态(或此类实例的组成)时才能获得积极奖励的RL实例,例如迷宫探索出口时有大量积极的奖励。尽管这种设置显然受到限制,但本文指出,培训与一项政策相关的深层网络,然后仅通过平滑贝尔曼方程并添加对初始状态的积极限制,可以通过随机性或好奇心来完成,而在此设置中,即在0-loss假设下,就可以在0板的假设中表现出积极的阳性Q值,以至于是在0板的假设中(以下一个效果),因此它是在0-loss假设中的出现(以下是一个效果),因此它是在0板的假设中(以下是一个效果),因此一定是一个效果,因此,这是一个效果,因此,这是一个效果,以至于一定要么在0层状态下(以下情况下),因此,一定是一个效果。被锁定。从这种初始化中,可以使用包含通往良好出口的路径的重播缓冲区来完善经典的深Q学习。未来的作品应考虑此框架的实际实验。
hedin的方程式提供了一条优雅的途径,可以通过一组非线性方程式的自洽迭代来计算确切的单体绿色功能(或传播器)。其一阶近似(称为GW)对应于环图的重新介绍,并且在物理和化学方面已显示出非常成功的。通过引入顶点校正,尽管具有挑战性,可以进行系统的改进。 考虑到异常的繁殖器和外部配对电位,我们得出了一组新的自洽的封闭方程组,等于著名的Hedin方程,但作为一阶近似粒子粒子(PP)t -matrix近似值,在其中执行梯子图的重置。 通过考虑低阶PP顶点校正,HedIn方程的PP版本提供了一种系统地超越T -Matrix近似的方法。可以进行系统的改进。考虑到异常的繁殖器和外部配对电位,我们得出了一组新的自洽的封闭方程组,等于著名的Hedin方程,但作为一阶近似粒子粒子(PP)t -matrix近似值,在其中执行梯子图的重置。通过考虑低阶PP顶点校正,HedIn方程的PP版本提供了一种系统地超越T -Matrix近似的方法。
摘要 - 边缘计算在云和最终用户之间运行,并努力以很高的速度提供计算服务。由于计算和存储资源是数量的,因此将更多资源引导到某些计算作业将阻止(并传递到云)他人的执行。我们使用两个指标评估系统性能:作业计算时间和工作阻止概率。边缘节点通常在高度不可预测的环境中运行,并在资源允许时复制工作执行会改善工作平均执行时间。我们表明,工作计算时间随组数量增加,但阻塞概率却没有。也就是说,在工作计算时间和阻止概率之间存在一个权衡。本文采用平均系统时间作为单个系统的性能指标来评估权衡。我们得出的结论是,随着到达率和云时间的最大化组的最佳组数量。