带有 CoSi 2 栅极电极的高性能 MOS 隧道阴极 T. Sadoh、Y. Zhang、H. Yasunaga、A. Kenjo、T. Tsurushima 和 M. Miyao 九州大学电子系 6-10-1 Hakozaki,福冈 812-8581,日本 电话:+81-92-642-3952 传真:+81-92-642-3974 电子邮件:sadoh@ed.kyushu-u.ac.jp 1. 简介 高稳定性低电压工作的微阴极是真空微电子学和先进平板显示技术中不可或缺的一部分。到目前为止,已经对具有金属-绝缘体-金属 (MIM) 结构 [1] 和金属氧化物半导体 (MOS) 结构 [2-4] 的隧道阴极进行了研究。Yokoo 等人。报道了具有 Al 或 n + 非晶硅 (a-Si) 栅极的 MOS 隧道阴极的工作特性 [2, 3]。具有 Al 栅极的阴极的发射效率高,但 Al/SiO 2 界面不稳定。另一方面,具有 a-Si 栅极的阴极的 a-Si/SiO 2 界面稳定。然而,a-Si 栅极的电阻相对较高,发射效率较低。因此,迫切需要提高阴极的发射效率和寿命。为了提高它们,需要具有低电阻和稳定电极/氧化物界面的高质量薄栅极电极。CoSi 2 是电阻最低的硅化物之一,具有化学和热稳定性。因此,预计采用 CoSi 2 作为栅极材料将提高阴极的性能。在这项研究中,研究了具有 CoSi 2 栅极的隧道阴极的工作特性,并证明了薄 CoSi 2 膜可以提高发射效率和寿命。这是关于具有 CoSi 2 栅电极的 MOS 隧道阴极的首次报道。2. 实验步骤所用衬底是电阻率为 10 Ωcm 的 n 型 Si。通过湿法氧化生长 160nm 厚的场氧化物。去除具有 0.3mm 2 的圆形栅极图案的氧化物后,通过干氧化在 900 ℃持续 22 分钟生长 10nm 厚的栅极氧化物。为了改善栅极氧化物,将样品在 Ar 中以 1100℃退火 90 分钟。栅极氧化后,使用固体源 MBE 系统在基底温度为 400℃下通过共沉积 Co 和 Si 形成 5-10nm 的 CoSi 2 栅电极,基底压力为 5x10 -11 Torr。最后,通过沉积 Al 形成接触。样品的示意图和能带图分别如图 1 和图 2 所示。测量了二极管电流 Id 和发射电流 Ie 与栅极偏压的关系。3. 结果与讨论图 3 显示了二极管和发射电流密度与电场的典型依赖关系。在 7 MV cm -1 以上的电场下,可以观察到电子的发射。图 4 显示了图 3 中数据的 Fowler-Nordheim 图。发现二极管和发射
诺芯微电子(NOVOSENSE,上交所股票代码688052)是一家高可靠性模拟及混合信号芯片公司,自2013年成立以来,公司专注于传感器、信号链、电源管理等领域,提供全面的半导体产品及解决方案,广泛应用于汽车、工业、信息通信及消费电子市场。
摘要 - 在实现量子误差校正(QEC)之后,Quantum计算机专注于嘈杂的中间尺度量子(NISQ)应用。与需要QEC的众所周知的量子算法(例如Shor's或Grover的算法)相比,NISQ应用具有不同的结构和属性,可以利用编译。编译的关键步骤是将程序中的Qubits映射到给定量子计算机上的物理Qubit,这已被证明是一个难题。在本文中,我们提出了OLSQ-GA,这是一种最佳的量子映射器,具有同时交换闸门吸收期间的关键特征,我们表明这是NISQ应用程序非常有效的优化技术。与其他最先进的方法相比,量子近似优化算法(QAOA)是一个重要的NISQ应用,OLSQ-GA可将深度降低高达50.0%,将深度降低100%,这转化为55.9%的法律改善。OLSQ-GA的溶液最优性是通过精确的SMT公式实现的。为了获得更好的可伸缩性,我们以初始映射或交替匹配的形式增强了方法,从而使OLSQ-GA加快了272倍的速度,而没有最佳损失。
最近已显示:损害累积和SC-FTO型设备的故障仅用于短路脉冲比给定临界值更长的短路脉冲,此后,栅极裂口电流明显增加; 由于热机械应力和随后的温度相关的顶部金属化挤出,降解和失效是在顶部SIO 2中产生裂纹的结果[1]; 遵守临时偏置条件,由于金属路径在设备顶部区域融合效果,因此可以恢复功能[2]。在此,提出和讨论了一个新的结果,即直接在门和排水之间流动的泄漏电流的检测,也影响晶体管的短路性能和稳健性,为此表明,短路期间门源偏置的值也起着重要作用。
摘要 首次展示了通过剥离技术在 SiO 2 / Si 衬底上制备的纳米膜三栅极 β -氧化镓 ( β -Ga 2 O 3 ) 场效应晶体管 ( FET )。通过采用电子束光刻技术,可以定义最小尺寸特征,覆盖通道宽度为 50 纳米。为了在 β -Ga 2 O 3 和栅极电介质之间获得高质量的界面,利用原子层沉积的 15 纳米厚的氧化铝 ( Al 2 O 3 ) 和三甲基铝 ( TMA ) 自清洁表面处理。制备的器件表现出极低的亚阈值斜率 ( SS ),为 61 mV dec − 1 ,高的漏极电流 ( I DS ) 开/关比为 1.5 × 10 9 ,以及可忽略不计的传输特性滞后。我们还通过实验证明了这些器件的稳健性,在高达 400°C 的温度下测量了电流-电压(I-V)特性。
本文提出了一种设计噪声消除共栅 (CG) 低噪声放大器 (LNA) 的新方法。该方法研究使用电感退化共源 (IDCS) 级与 CG 级并联,而不是共源 (CS) 级。考虑到 IDCS LNA 的特殊规格,所提出的拓扑可以实现更低的噪声系数 (NF) 和更好的输入阻抗匹配。对该拓扑进行了分析计算,并给出了满足输入阻抗匹配和噪声消除条件的方程。还通过计算每个噪声源的传递函数来计算所提出的 LNA 的 NF,同时满足这些条件。为了验证理论分析,设计并优化了两个不同的 X 波段 LNA。使用先进设计系统 (ADS) 电磁动量和 GaAS pHEMT 0.1 µ m 工艺模型进行模拟。结果表明,所提出的方法可以实现更好的输入阻抗匹配和更低的 NF,而输出阻抗匹配和增益具有相对相同的行为。
摘要 对辐射敏感的金属氧化物半导体场效应晶体管 (RADFET) 经 110 Gy(H 2 O) 伽马射线辐照。在不同正栅极偏压下辐照过程中的阈值电压 VT 结果表明,VT 随栅极偏压的增加而增加。辐照过程中的阈值电压偏移 Δ VT 拟合得很好。分析了辐射过程中固定陷阱 (FT) 和开关陷阱 (ST) 对 Δ VT 的贡献。结果表明,FT 的贡献明显高于 ST。提出了一个描述阈值电压偏移及其分量对栅极偏压依赖性的函数,该函数与实验值非常吻合。研究了辐照后 RADFET 在室温下无栅极偏压的退火情况。阈值电压的恢复(称为衰减)会随着辐射期间施加的栅极偏压而略有增加。 Δ VT 表现出与固定状态引起的阈值电压分量 Δ V ft 相同的变化,而由于开关陷阱引起的阈值电压分量 Δ V st 没有变化。
硅基氮化镓高电子迁移率晶体管 (HEMT) 以其低成本、大面积应用等优势在功率器件应用领域引起了广泛关注 [1]。近年来,双向开关在轧机、电梯、风力发电等许多工业双向功率转换应用中备受青睐。此外,常闭单向 HEMT 是实现高性能双向开关的重要器件 [2,3]。常闭单向 HEMT 通常通过在 HEMT 的漏极中嵌入肖特基势垒二极管 (SBD) 来实现。目前已经采用了氟注入或金属氧化物半导体技术。然而,在常闭单向 HEMT 中尚未见具有良好阈值电压 (V th ) 可控性和稳定性的 p-GaN 栅极技术 [4] 的报道。此外,凹陷式肖特基漏极[5]和场板技术[6]可以为实现具有小开启电压(V on )、高击穿电压(BV)和良好动态性能的单向HEMT提供相关参考。本研究通过实验证明了一种具有凹陷肖特基漏极和复合源漏场板的单向p-GaN HEMT(RS-FP-HEMT)。研究并揭示了漏极电压应力对动态性能的影响。实验。图1(a)和(b)分别显示了传统的带欧姆漏极的p-GaN HEMT(C-HEMT)和提出的RS-FP-HEMT的示意横截面结构。这两个器件都是在GaN-on-Si晶片上制造的。外延结构由 3.4 µ m 缓冲层、320 nm i-GaN 沟道层、0.7 nm AlN 中间层、15 nm Al 0.2 Ga 0.8 N 阻挡层和 75 nm p-GaN 层(Mg 掺杂浓度为 1 × 10 19 cm −3)组成。器件制造首先通过反应离子刻蚀 (RIE) 形成 p-GaN 栅极岛。然后,蒸发 Ti/Al/Ni/-Au 金属堆栈并在 N 2 环境中以 850 ◦C 退火 30 秒。形成凹陷的肖特基漏极
近年来,晶体管技术的进步使得人们能够设计出越来越复杂的集成电路。随着在降低功耗和提高性能方面取得的巨大成就,在考虑深度扩展技术时也面临着新的挑战。明显的工艺变异性、老化和辐射效应是经常出现的设计挑战,其重要性也日益增加 [1-5]。集成电路越来越容易受到单个高能粒子撞击的影响,可能会产生破坏性或非破坏性的影响。当粒子撞击触发 CMOS 电路中固有的 PNPN 结构中的寄生晶体管时,就会发生单粒子闩锁 (SEL),这可能会产生破坏性影响 [6]。当高能粒子从顺序逻辑元件撞击晶体管的敏感区域并沉积足够的电荷以扰乱电路时,单粒子翻转 (SEU) 会以位翻转的形式出现。此外,组合逻辑电路容易受到单粒子瞬态 (SET) 效应的影响,这种效应表现为粒子与处于关断状态的晶体管漏极电极相互作用产生的寄生瞬态电流。这并不是单粒子效应 (SEE) 的详尽列表 [7]。辐射加固设计 (RHBD) 技术已经开发出来,用于应对不同辐射条件下电子电路的辐射效应
焊接温度 Tsol 260 °C 4 注1. 50% 占空比,1ms PW 注2. ≤1μs PW,300pps 注3. AC 1 分钟,RH = 40 ~ 60% 注4. 10 秒