带有 CoSi 2 栅极电极的高性能 MOS 隧道阴极 T. Sadoh、Y. Zhang、H. Yasunaga、A. Kenjo、T. Tsurushima 和 M. Miyao 九州大学电子系 6-10-1 Hakozaki,福冈 812-8581,日本 电话:+81-92-642-3952 传真:+81-92-642-3974 电子邮件:sadoh@ed.kyushu-u.ac.jp 1. 简介 高稳定性低电压工作的微阴极是真空微电子学和先进平板显示技术中不可或缺的一部分。到目前为止,已经对具有金属-绝缘体-金属 (MIM) 结构 [1] 和金属氧化物半导体 (MOS) 结构 [2-4] 的隧道阴极进行了研究。Yokoo 等人。报道了具有 Al 或 n + 非晶硅 (a-Si) 栅极的 MOS 隧道阴极的工作特性 [2, 3]。具有 Al 栅极的阴极的发射效率高,但 Al/SiO 2 界面不稳定。另一方面,具有 a-Si 栅极的阴极的 a-Si/SiO 2 界面稳定。然而,a-Si 栅极的电阻相对较高,发射效率较低。因此,迫切需要提高阴极的发射效率和寿命。为了提高它们,需要具有低电阻和稳定电极/氧化物界面的高质量薄栅极电极。CoSi 2 是电阻最低的硅化物之一,具有化学和热稳定性。因此,预计采用 CoSi 2 作为栅极材料将提高阴极的性能。在这项研究中,研究了具有 CoSi 2 栅极的隧道阴极的工作特性,并证明了薄 CoSi 2 膜可以提高发射效率和寿命。这是关于具有 CoSi 2 栅电极的 MOS 隧道阴极的首次报道。2. 实验步骤所用衬底是电阻率为 10 Ωcm 的 n 型 Si。通过湿法氧化生长 160nm 厚的场氧化物。去除具有 0.3mm 2 的圆形栅极图案的氧化物后,通过干氧化在 900 ℃持续 22 分钟生长 10nm 厚的栅极氧化物。为了改善栅极氧化物,将样品在 Ar 中以 1100℃退火 90 分钟。栅极氧化后,使用固体源 MBE 系统在基底温度为 400℃下通过共沉积 Co 和 Si 形成 5-10nm 的 CoSi 2 栅电极,基底压力为 5x10 -11 Torr。最后,通过沉积 Al 形成接触。样品的示意图和能带图分别如图 1 和图 2 所示。测量了二极管电流 Id 和发射电流 Ie 与栅极偏压的关系。3. 结果与讨论图 3 显示了二极管和发射电流密度与电场的典型依赖关系。在 7 MV cm -1 以上的电场下,可以观察到电子的发射。图 4 显示了图 3 中数据的 Fowler-Nordheim 图。发现二极管和发射
主要关键词