•所有层:96%氧化铝基板和杜邦5771 AU厚膜金属化•内部设计的,商业上制造的,商业上的步骤I•Ferro 10-054玻璃作为粘合剂(蓝色)•堆叠•玻璃粘合剂湿•时,•水平对齐的“壁上”,在150°C下,在150°C下,在150°C下,lift lime d Dried速度,该速度为20分钟,仪式为20分钟。 850°C在空气中的盒子烤箱中,坡道速率为40°C/min。步骤iii•将Au糊(5771)添加到侧壁上的Au垫之间的空间•在150°C下干燥20分钟,坡度速率为40°C/min,在850°C下发射20分钟,坡道速率为40°C/min,在空气中的盒子烤箱
能源可用性和温室气体排放已成为与传统不可再生来源过度消耗有关的问题(Wang等,2013)。迫切需要开发和寻找可再生绿色能源资源,同时迫切需要更好的能源存储系统。超级电容器引起了广泛的兴趣(Wang等,2007; Sarno等,2015),因为它们的高能量密度,出色的周期稳定性,高特异性电容和长寿(Xia等,2012)。根据不同的储能机制,可以将超级电容器分为两个主要类别(Yang等,2012):双层电容器和伪能力。在双层电容器(例如,碳材料)中,电极通过使用界面双层的静电电容来存储能量。伪电容器的电容比双层电容器更高,它通过快速且可逆的氧化还原反应保持电荷。作为电极材料,金属氧化物由于其在氧化还原反应中的高电容特性而引起了极大的兴趣。已经使用了许多过渡金属氧化物和导电聚合物。氧化铝具有许多独特而有吸引力的特性,例如较大的特定表面积,良好的导热性,对大多数酸和碱的惰性,机械强度和刚度,耐磨性,高吸附能力以及热稳定性。此外,Al 2 O 3也是无毒的,高度磨料且廉价的(Mallakpour和Khadem,2015; Mirjalili等,2011; Gunday等,2019)。这些特性使Al 2 O 3适用于各种应用,例如催化剂,传感器和超级电容器。尤其是,据报道,由γ-Al 2 O 3纳米颗粒,多脏和氧化石墨烯还原构成的三元电极的超级电容器性能(Azizi等,2020)。证明了Al 2 O 3在改善和增强导电聚合物电化学稳定性和电容的有益作用,这要归功于催化的氧化还原反应能力。然而,据我们所知,唯一具有高纯度和形态均匀性的氧化铝构成的电极的电化学特性从未被报道过。为了形成稳定,廉价且执行的电极,在这里,我们报告了由热等离子体技术制备的Al 2 O 3粉末用于超级电容器应用。在高纯度和细粉合成过程中,避免了通常在化学过程中所需的复杂且昂贵的制备步骤的蒸气相反应,即降水和纯化,特别有助于生产具有较窄尺寸分布的毛胶状颗粒(Iovane等,2019; Hong和Yan。,2019; Hong and Yan,2018)。扫描电子显微镜(SEM),热重分析(TG),傅立叶
激光粉末床熔合是一项新兴的工业技术,尤其适用于金属和聚合物应用。然而,由于氧化物陶瓷的抗热震性低、致密化程度低以及在可见光或近红外范围内的光吸收率低,将其应用于氧化物陶瓷仍然具有挑战性。在本文中,给出了一种增加粉末吸收率和减少激光加工氧化铝零件过程中开裂的解决方案。这是通过在喷雾干燥的氧化铝颗粒中使用均匀分散和还原的二氧化钛添加剂(TiO 2 − x)来实现的,从而导致在粉末床熔合过程中形成具有改善的热震行为的钛酸铝。评估了不同还原温度对这些颗粒的粉末床密度、流动性、光吸收和晶粒生长的影响。使用含有 50 mol% (43.4 vol%) TiO 2 − x 的粉末可以制造出密度为 96.5%、抗压强度为 346.6 MPa 和杨氏模量为 90.2 GPa 的裂纹减少的零件。
及其复合材料在高湿度应用条件下仍然面临着磷水解的挑战。了解硅与 CaAlSiN 3 :Eu 2+ 之间的界面黏附力对于该材料的开发和应用具有重要意义。在本文中,首先通过实验测量和比较了硅/原始 CaAlSiN 3 :Eu 2+和硅/水解 CaAlSiN 3 :Eu 2+复合材料的力学性能,其中水解反应后复合材料的拉伸强度和杨氏模量都有所增加。然后,采用第一性原理密度泛函理论 (DFT) 计算在原子水平上研究硅分子在原始和水解 CaAlSiN 3 [0 1 0] 上的黏附行为。结果表明:(1)硅分子通过范德华(vdW)相互作用在原始 CaAlSiN 3 [0 1 0] 上形成弱吸附,而由于界面处形成了氢键,硅分子在水解 CaAlSiN 3 [0 1 0] 上的吸附强度大大增强;(2)瞬态计算表明,由于吸附能增加以及表面粗糙度增加,硅在水解 CaAlSiN 3 [0 1 0] 上的滑动能垒高于在原始 CaAlSiN 3 [0 1 0] 上的滑动能垒。总的来说,本文的研究结果可以指导 LED 封装中荧光粉的选择、储存和工艺,也有助于改善高湿度条件下使用的 LED 封装的可靠性设计。
抽象的陶瓷立体光刻或增值税光聚合是一个过程,允许制造具有高度复杂形状的陶瓷物体。晶格结构与高级优化拓扑工具一起使用,用于设计具有优化机械电阻的可打印轻质形状。如果这些晶格结构的机械电阻在聚合物状态下得到很好的控制,则在烧结阶段的高温下它们可以严重变形。应确定烧结过程中晶格结构的变形敏感性在概念阶段包括此方面。晶格的有限元(fem)烧结是一个有趣的解决方案,可以在数值上预测晶格的变形敏感性并确定其最小壁厚。这需要确定印刷绿色标本的烧结行为,并考虑到烧结各向异性,这涉及层之间的耐药性较弱。在这项研究中,烧结行为首先由多轴扩张法确定,并通过分析建模,然后通过FEM方法进行模拟。之后,进行了具有不同壁厚厚度的晶格的烧结模拟。这允许测试每个晶格壁厚的模拟工具可预测性,并比较其在高温下的变形灵敏度。
[3] M.E.Moussa, C.I.Esposito, M.E.Elpers, T.M.Wright, D.E.Padgett,髋关节脱位增加全髋关节置换术中氧化锆股骨头的粗糙度:59 次检索分析,J. Arthroplasty。30 (2015) 713–717。https://doi.org/10.1016/j.arth.2014.10.036。
氧化铝和氧化石墨烯的增强陶瓷基质复合材料(CMC)已被广泛搜索,但仍未解决的问题,例如石墨烯的最佳分布或纤维纤维和基质之间的效率键。这项工作引入了一种基于Sol-Gel方法的新型制造程序,将Boehmite视为氧化铝前体,而氧化石墨烯纳米片则是增强阶段。通过在温和的条件下通过反应的火花等离子体烧结(RSP)进行样品的完整致密化。结构表征是由XRD,SEM和Micro-Raman以及其他技术进行的,并通过XPS研究了Al-O-C键的存在。通过Vickers的显微指示和纳米构造进行了机械表征。没有观察到有关年轻的模量,硬度或断裂韧性的显着变化,尽管对石墨烯分布的均匀性以及基质和增强阶段之间的化学键进行了改善。
摘要:设计纳米级异质结构材料是增强气体传感性能的一种众所周知的方法。在本研究中,溶解在乙醇溶剂中的氯化锌和二水合氯化锡的混合溶液被用作初始前体,使用超声喷雾热解 (USP) 法在氧化铝基底上沉积传感层。通过在初始前体中应用不同的比例来生长几种 ZnO/SnO 2 异质结构。这些异质结构被用作传感 H 2 S 气体分子的活性材料。结果表明,USP 前体中氯化锌的增加会改变传感器的 H 2 S 灵敏度。发现最佳工作温度为 450°C。传感器的 USP 前体中含有 5:1(ZnCl 2:SnCl 2·2H 2 O)的比例,比纯 SnO 2(约 95 倍)样品和其他异质结构具有更高的响应。随后,还研究了 ZnO/SnO 2 异质结构对 5 ppm NO 2 、200 ppm 甲醇、100 ppm CH 4 、丙酮和乙醇的选择性。分析了 ZnO/SnO 2 的气敏机理,认为气敏性能的显著提高主要归因于 ZnO 和 SnO 2 之间异质结构的形成。还利用 X 射线衍射、扫描电子显微镜、能量色散 X 射线、透射电子显微镜和 X 射线光电子能谱分析了合成的材料,以研究 ZnO/SnO 2 异质结构的材料分布、晶粒尺寸和材料质量。关键词:气体传感器、ZnO/SnO 2 、异质结构、超声喷雾热解、H 2 S ■ 介绍
图 2:(a) 316L+20%WC 复合材料的 SEM 显微照片。部分溶解的 WC 碳化物(亮圆圈)均匀分散在增强基质中。(b) (a) 的特写视图,显示了部分溶解的 WC 碳化物(浅灰色)的紧邻区域以及由凝固碳化物组成的网络。(c) (a) 的另一个特写视图,重点关注熔池和 HAZ 之间的过渡及其各自的凝固碳化物。
•氧化铝和mullite纤维(仍处于R&D相)等值型•碳/玄武岩混合动力 - 向一个方向进行导电•氧化铝涂覆的玄武岩 - 高热绝缘•对Tandelta测量非常感兴趣。Hexcel•Quartz Fabric -100UM,Quartzel 3M的潜在替代品•Nextel(氧化铝)织物 - 用于高温(> 1000C)应用