小型卫星的热控制系统 (TCS) 极具挑战性,因为传统的热设计实践、硬件和测试在压缩时可能无法产生相同的性能结果。小型卫星领域已经出现了用于热软件和硬件的新兴技术,而且还有更多技术正在迅速开发中。本文将讨论设计小型卫星热系统的固有挑战、热建模的进步、热硬件的最新进展以及新兴的热控制创新。这些技术包括用于以下特定小型卫星应用:热界面材料、热隔离器、热带、热管、楔形锁、石墨芯、可展开散热器、相变材料、百叶窗、低温冷却器和遮阳板。随着这些新技术的更多应用,小型卫星设计将能够维持对热要求更高的轨道任务。
过去十年,对数据中心和网络服务的需求迅速增长。然而,由于更高效的电子硬件、向超大规模和云数据中心的迁移以及更高效的冷却基础设施等,近年来电力需求已经趋于稳定。本文对冷却技术进行了关键概述并讨论了研究差距。数据通信设施中的冷却技术大致可分为风冷和液冷系统。架空/地板下送风、热/冷通道布局和热/冷通道遏制是优化风冷系统性能的主要策略。架空地板架构已在数据通信设施中得到广泛采用,但存在大量气流泄漏(约 25-50%)。研究发现,最佳通风系统是硬地板设计,采用架空冷风输送和热风回风管道,而不是基于房间的送风和回风。冷通道遏制可以更好地降低机架的最高入口温度并抑制冷却系统故障时的温升,而热通道遏制可以提供更低的机架平均入口温度和更小的标准差,并且受服务器周围气密性的影响更小。随着机架功率密度超过 10 kW/机架且热流超过 100 kW/cm 2 ,传统的风冷系统不再是可行的热管理解决方案。喷雾冷却、冲击射流、浸没冷却、液冷微通道和热管等液体冷却方法是克服风冷系统容量限制的新兴技术之一。对于浸没冷却,过渡到过冷两相流沸腾、通过添加微结构或不规则性来创造更多的成核位点和更大的传热表面积来增强传热以及利用纳米流体是受到学者关注的突出增强策略。将电力电子模块浸入液体中可使热阻降低至空气冷却系统的 25%,或微通道或喷雾冷却等液体冷却系统的 30-50%。根据现有的冷却系统、总体热负荷和热点,热管系统可以作为独立单元或与空气冷却系统结合使用,即所谓的混合系统,为数据中心提供服务。与典型的空气冷却系统相比,混合系统可以分别降低 37-58% 和 20-70% 的年度冷却负荷系数和能耗。
摘要。本文考虑开发和制造具有高光效和高显色指数 (CRI) 的大功率 LED 灯具。作为光源,使用了 6 个强大的 LED СОВ (Chip-on-Board) 模块 CreeCXA 2550,其辐射在 600…650 nm 的光谱范围内包含准色度峰。它可以提供高于 92 的 CRI 值。介绍了带有所示 COB 模块的灯具改进的紧凑结构的特点。为了确保 LED COB 模块的正常热状态,已经创建了一个基于热管的小型冷却系统,其结构元件的最佳尺寸已通过计算机模拟确定。建模和实验研究的结果表明,所开发和制造的 LED COB 模块被动冷却系统可在 COB 模块总电功率高达 290 W 时提供发光晶体的工作温度模式(高达 85°C),并允许在组合电源连续人工照明系统中使用此类灯具。所开发的冷却系统在某些水平角度的效率扩大了照明装置的应用范围。
与其他电池化学物质(例如铅酸)相比,抽象可充电锂离子电池(LIB)在启用电动汽车方面具有相当大的进步。但是,LIB技术的主要挑战是对电池电池的适当热管理,这对于确保电池安全性至关重要,例如避免电池爆炸或热跑道事件并最大程度地发挥电池的寿命。电池热管理系统(BTM)控制单个单元的温度,使其保持允许范围。本文回顾了不同种类的BTM,例如空气,液体,相变材料,热管和热电元件冷却。此外,结合两种或多种冷却方法的混合系统将这些技术与功耗方法(即主动或被动冷却)进行了比较,并陈述了每种技术的优点和缺点。此外,它集中于考虑用于商业用途的冷却技术,即汽车供应商是否将其用于实验和理论研究。最重要的是,它确定了需要进一步探索,总结BTMS技术的几个关键差距,并指出了未来工作的指示,这将有助于研究人员增强BTM的设计及其对商业目的的适用性。
摘要。本研究介绍了一种多功能结构,用于空间工程应用,这是 ESA 资助的 TOPDESS 项目的一部分。该项目的主要目的是设计一种能够通过被动驱动展开的热控制装置。设计了一种组合装置,由脉动热管 (PHP) 可折叠热交换器和形状记忆合金 (SMA) 丝组成。SMA 丝的展开被认为是通过与热源的热接触和沿丝的传导来控制的。由于热源集中且丝受到对流的影响,因此沿丝会产生温度梯度。本文提出了一种能够预测 SMA 丝在空间温度梯度下的行为的一维模式。结果表明,只有当丝受到均匀的温度分布时,系统才能进行旋转角度大于 80 ◦ 的折叠和展开循环;在温度梯度的情况下,可实现的旋转角度约为 20 ◦ 。分析指出了该驱动系统的可行性,强调了关键的技术方面,为整个系统的未来发展奠定了基础。
摘要 如今,对笔记本电脑、手机等许多电子设备的需求量很大。由于持续运行,此类电子元件产生的热量增加。尽管微型冰箱、微电子、微型热管扩散器、燃料处理生物医学和航空航天会产生热量,但实施微通道可能是一个很好的解决方案。因此,已经进行了几项研究,通过使用微通道散热来提高此类持续运行的电子设备的性能。在本研究中,对水力直径为 253 µm、长度为 63 mm 的圆形微通道进行了实验和数值研究,在恒定壁温条件下,将微通道浸入恒温油中,水被迫通过总共 5 个微通道。对各种流速进行的实验表明,对于所考虑的流速,微通道对传热速率有显著影响。通过 COMSOL 5.1 软件获得的数值结果与实验结果吻合良好。观察到,传热系数随雷诺数增加而增大,而摩擦系数随雷诺数减小。根据数值和实验结果,建议采用摩擦系数和努塞尔特数的经验关联来合理估计微通道中的传热。
摘要:工作场所中极端温度的暴露涉及工人的身体危害。一个不受欢迎的工人的表现和警惕性可能较低,因此可能更容易受到事故和伤害。由于某些工作场所实施的现有标准的不兼容,并且在许多类型的保护设备中缺乏热管调节,这些保护设备通常使用各种聚合物材料制造,因此在许多工作领域中,热应力仍然是最常见的物理危害之一。但是,使用智能纺织技术可以克服这些问题中的许多问题,这些技术能够在个人保护设备中启用智能温度调节。基于导电和功能性聚合物材料,智能纺织品可以检测许多外部刺激并对其做出反应。相互联系的传感器和执行器与现有风险相互作用并反应可为佩戴者提供更高的安全性,保护和舒适性。因此,智能保护设备的技能可以促进工作场所中的错误和事故的数量和严重性,从而提高绩效,效率和生产力。本评论通过审查和讨论市售系统的艺术状态以及以前的研究工作中的进步,提供了作者对这些类型技术知识状态的概述和意见。
摘要。本文研究了垂直热量储能系统中相变材料(PCM)的熔融行为,并在传热管表面上提供了均匀和可变长度的薄矩形鳍。选定的PCM和传热液(HTF)分别是石蜡和水。HTF通过直径为10毫米的螺旋盘铜管,以熔化PCM。发现使用FINS中PCM熔化所需的时间为五个小时,而对于没有鳍的系统,五个小时和四十分钟,对于恒定水温的相同条件约为70°C,流速为0.02 kg/s。与没有鳍的HTF管相比, HTF管的融化速度比熔融速度更快13.33%。 这样的快速充电过程将有助于在瘦生产时间内的太阳热恢复和热恢复应用中短时间/时间较短的时间内存储最大能量。 ©2020。 cbiore-jred。 保留所有权利HTF管的融化速度比熔融速度更快13.33%。这样的快速充电过程将有助于在瘦生产时间内的太阳热恢复和热恢复应用中短时间/时间较短的时间内存储最大能量。©2020。cbiore-jred。保留所有权利
传热设备,例如热管,蒸气室,热通道,微通道散热器和毛孔冷却板,依靠二维稳定的稳定热传导来热管理电信,航空航天,航空航天和微电极的热传播组件。传导形状因子可以评估这些设备的二维稳定热传导。设备的nulus的几何形状及其在热生成组件上的机械附件可能会有所不同。鉴于单面加热和冷却的突出性,二维热传导通常是通过纳鲁斯扇形进行的。第一次开发了一个分析模型来预测环形扇区的传导形状因子。本模型是先前开发的等效圆形环模的扩展,并应用了等效的同心圆形环扇门。该模型的定量是参数边界几何的有限元元素建模的结果,在相对差异10%的相对差异之内捕获了大多数数据。目前的模型为同心形状的等温边界之间形成的环形扇形的形状因子提供了模拟,封闭形式的分析解决方案。更重要的是,它为设计和优化新型传热设备提供了一个统一的平台。
月球陨石坑观测和传感卫星 (LCROSS) 任务发现的数百万吨冰水被认为是月球上最宝贵的资源。从月球风化层中提取这些水冰需要非常高的热能输入,相反,在近真空环境中捕获这些水蒸气也需要很大的冷却能力。因此,有必要为未来由放射性同位素驱动的月球冰采矿车开发专用的热管理系统 (TMS)。根据 SBIR 第一阶段计划,Advanced Cooling Technologies, Inc (ACT) 与 Honeybee Robotics (HBR) 合作开发了一种热管理系统,该系统可以战略性地利用核动力源的废热来升华月球冰土中的水蒸气,并使用月球环境温度作为散热器来重新冻结冷阱容器内的升华蒸气。这样,就可以在降低系统质量和占地面积的情况下,最大限度地减少冰提取和蒸汽收集所需的电能。进行了初步权衡研究,设计了 TMS 的多个热组件,包括基于废热的热芯和热管散热器冷阱罐。开发并测试了概念验证原型。设计了一个可能满足 NASA 采矿目标的初步全尺寸系统,并估算了采矿效率、系统质量/体积和功耗(电能和热能)。