摘要核酸ADP-核糖基化及其在催化和水解中的杂化酶在生命的所有王国中都普遍存在。然而,目前不Xpleder Xpled ,其在哺乳动物和细菌pH y生物学中的作用包括 - 植物间冲突。 R ecently, se v eral e xamples of enzymatic sy stems f or RNA ADP-ribosylation ha v e been identified, sho wing that all major types of RNA species, including messenger RNA, ribosomal RNA, and transfer RNA, can be targeted by ADP -ribosyltransf erases (ARTs) whic h at tac h ADP-ribose modifications either to nucle- obases, the backbone核糖或磷酸盐末端。 对于属于宏观域,ARH或Nadar Superf Amilies的RNA ADP-核糖基化的可抗性知之甚少。 在这里,我们表征了ADP-核糖基y drolase对RNA物种ADP-核糖基化的drolytic活性。 我们证明了Nadar ADP-核糖基Y drolase是唯一能够在磷酸末端RNA ADP-核糖基上不活跃的同时,唯一能够对鸟氨酸RNA RNA碱基ADP-核糖基化。 此外,我们揭示了含宏域的PARG酶是唯一具有具有2'-H y DRO Xyl Xyl Xyl Xyl Xyl Xyl Xyl rNA ADP-核糖基催化催化催化sed b y pseudomonAsAsAsAsuginosa效应的特定和有效性的Drolase类型。 moreo ver,使用Rhsp2 /细菌作为e茎,我们证明了par g酶可以作为对抗Xins抗菌RNA-T的保护性免疫酶的作用。,其在哺乳动物和细菌pH y生物学中的作用包括 - 植物间冲突。R ecently, se v eral e xamples of enzymatic sy stems f or RNA ADP-ribosylation ha v e been identified, sho wing that all major types of RNA species, including messenger RNA, ribosomal RNA, and transfer RNA, can be targeted by ADP -ribosyltransf erases (ARTs) whic h at tac h ADP-ribose modifications either to nucle- obases, the backbone核糖或磷酸盐末端。对于属于宏观域,ARH或Nadar Superf Amilies的RNA ADP-核糖基化的可抗性知之甚少。在这里,我们表征了ADP-核糖基y drolase对RNA物种ADP-核糖基化的drolytic活性。我们证明了Nadar ADP-核糖基Y drolase是唯一能够在磷酸末端RNA ADP-核糖基上不活跃的同时,唯一能够对鸟氨酸RNA RNA碱基ADP-核糖基化。此外,我们揭示了含宏域的PARG酶是唯一具有具有2'-H y DRO Xyl Xyl Xyl Xyl Xyl Xyl Xyl rNA ADP-核糖基催化催化催化sed b y pseudomonAsAsAsAsuginosa效应的特定和有效性的Drolase类型。moreo ver,使用Rhsp2 /细菌作为e茎,我们证明了par g酶可以作为对抗Xins抗菌RNA-T的保护性免疫酶的作用。
糖尿病及其并发症代表了全世界对健康问题的极为问题。全球疾病发病率的非凡增加表明,新的,安全,有效和可抗性的治疗方法的发展需要挑战。这种复杂的疾病以高血糖水平为特征,涉及其病因中的许多致病过程。即使背后的分子机制尚不清楚,也广泛认识到,氧化应激,晚期糖化终产物(年龄)和炎症的积累与疾病的发育,进展和相关并发症有关。在这方面,酚类化合物代表了有价值的治疗视角。因此,本综述着重于酚类化合物在与糖尿病相关的氧化应激,年龄产生和炎症中的作用。,我们总结了酚类化合物的抗氧化和抗糖化特性的最新结果,以及在炎症和炎症相关途径上的活性调节与糖尿病相关的炎症和炎症相关途径,即核因子酸,核因子 - κB,核因子基酶/蛋白质蛋白酶氨基糖酶/磷脂酶氨基酶氨基酶氨基酶氨基糖酶(核因子蛋白酶),描述了激酶B信号通路。突出显示,酚类化合物在预防或治疗策略的发展中的抗糖尿病潜力及其相关的复杂性。
糖尿病中的慢性高血糖状态导致葡萄糖和蛋白质,DNA和脂质之间的共价加合物通过称为Maillard反应的非酶过程形成。此过程导致形成高级糖基化末端产品(年龄)。3晚期终端产物是不可逆的大分子,并通过年龄受体(RAGE)发挥其生物学活性。4年龄之间的相互作用与愤怒之间的相互作用破坏了内皮细胞中氧化 - 还原反应,并触发炎症和血栓形成反应。狂暴,高度涉及促炎性反应和自身免疫性,有助于糖尿病血管病,炎症和动脉粥样硬化过程的进展。5,6此外,年龄段轴可导致活性氧(ROS)的产生增加,而低密度脂蛋白(LDL)的氧化,加剧的斑块形成。7
未分化的神经茎和祖细胞(NSPC)会遇到结合质膜蛋白和功能分化的细胞外信号。膜蛋白受N-连接的糖基化调节,从而使糖基化在细胞分化中起着至关重要的作用。我们评估了在NSPC中控制N-糖基化的酶,发现负责产生B 1,6的N-聚糖,N-乙酰氨基氨基氨基转移酶V(MGAT5)的酶的损失导致NSPC分化的体外和In Vivo的特定变化。MGAT5纯合子NULL NSPC形成更多的神经元和较少的星形胶质细胞。在脑大脑皮层中,MGAT5的损失导致神经元分化加速。快速的神经元分化导致NSPC生态裂细胞的耗竭,导致MGAT5 NULL小鼠的皮质神经元层的转移。糖基化酶MGAT5在细胞分化和早期大脑发育中起关键且先前未认识到的作用。
在DNA复制过程中被识别为t)和尿嘧啶DNA糖基化酶抑制剂UGI(阻止尿嘧啶糖基化酶的U糖基化U的糖基化,从而导致碱基切除修复(Komor等,2016)。该融合蛋白专门针对C·G碱基对突变,以在单链引导RNA(SGRNA)的指导下进行T·碱基对;该蛋白质也称为胞嘧啶碱基编辑器(CBE)。cbe不会产生DNA双链断裂,而仅导致单个C·G碱基对的靶向突变为T·基对基对,因此比原始的CRISPR/CAS9基因组编辑技术更精确(Komor等人,2016年)。CBE预计在猪的遗传改善方面将更安全。迄今为止,CBE在猪的遗传修饰中的应用已取得了几个突破。尽管BES已成功地用于生产基因工程的猪(Li等,2018; Xie等,2019; Wang等,2020),但过去使用的BES(例如BE3)被证明会引起高比例的
Pécs,Pécs,Pécs,匈牙利博士04/2000临床分子遗传学Radboud University,荷兰奖学金06/2005生化遗传学A.作为临床遗传学家和代谢专家的个人陈述,我在儿科方面具有良好的背景和经验,专门针对临床生化遗传学。我的重点和主要专业知识是代谢的天生疾病,尤其是糖基化的先天性疾病(CDG)。经过多年的基础和转化研究,诊断和患者护理代谢状况,我参与了几项自然史研究,从事天生错误。在我们先前的回顾性研究之后1开始收集糖基化缺陷中的标准临床数据。I是PD/PI,具有研究CDG的U54 FCDGC联盟的12个研究地点。作为一名在2大洲工作的国际学员,我拥有与美国和欧洲研究小组在翻译研究项目方面的成功合作的历史,如著名的多中心出版物所证明的那样。我很有动力进行翻译,我的目标是带上参与生化遗传学领域的临床医生,遗传学家,基础科学家和学生,这对于为当前的成功提出成功至关重要。我一直与Drs合作。Sloan's,Flanagan Steet's和Kozicz的实验室多年来,在各种人类疾病及其体内和体外模型系统中涉及干扰性糖基化的各种项目多年。我们的团队还合作生成了拟议研究的大量初步数据。自从我的科学嘉莉(Carrie R)作为荷兰的代谢儿科医生开始以来,我一直专注于糖基化,并研究了各种人类疾病及其体内和体外模型系统中的糖基化。i建立了一个CDG的疾病严重程度评分系统,该系统已在欧洲和美国实践使用1 5年1。除了定义具有异常糖基化的新遗传疾病群(代谢性阳离子laxa; arcl-2a);发现了几个新的天生错误(Megdel综合征,SRD5A3-CDG,SLC35A1-CDG,PGM1-CDG,ATP6V1A-CDG,ATP6V1 E1-CDG,MAN2B2-CDG,MAN2B2-CDG,STT3A-CDG,STT3A-CDG,STT3A-CDG)E.G. dolk1-cdg)。最近,我们报道了PMM2-CDG患者的糖蛋白质组学和蛋白质组学研究,并将山梨糖醇确定为PMM2-CDG 4中治疗反应的标志物。我们的团队确定了中间细丝糖基化在PGM1-CDG中扩张的心肌病发育中的新作用。我们的结果提供了改变糖基化和心脏功能之间的联系。我们还表明,我们可以使用表达野生型PGM1 cDNA的AVV载体来纠正心脏病理,为PGM1-CDG 5中的新疗法奠定了基础。
摘要:线粒体功能障碍和氧化应激是许多人类疾病的突出特征。线粒体功能的失调代表了神经退行性疾病和癌症等疾病的常见致病机制。烟酰胺腺嘌呤二核苷酸(NAD +)池的维持和阳性NAD + /NADH比率对于线粒体和细胞功能至关重要。NAD +的合成和降解及其主要中间体在细胞室之间的运输是维持最佳NAD水平的重要作用,可调节NAD +限制酶,例如Sirtuins(Sirt),例如ADP-ribose聚合酶,综合酶聚合酶和CD38/157 Enzymes,并且在静脉内外表现出色。在这篇综述中,我们介绍并讨论了NAD +,NAD +填充酶,线粒体功能和疾病之间的联系。试图用补充NAD +循环中间体和SIRTUINS和ADP-核糖基转移酶抑制剂来治疗各种疾病,可能会突出一种可能的治疗方法,用于治疗癌症和神经退行性疾病。
结果:2小时的餐后血糖,糖基化的血红蛋白,胰岛素抵抗指数,总胆固醇,低密度脂蛋白胆固醇,体重指数,腰围,腰围,收缩压和舒张压血压在干预后的介入显着降低。相比之下,高密度脂蛋白胆固醇高于干预前,并且在统计学上很重要(p <0.05)。随访1年后,对照组的糖基化血红蛋白和体重指数高于干预前,并且在统计学上是显着的(p <0.05)。2小时的餐后血糖,糖基化的血红蛋白,胰岛素抵抗指数,体重指数和藜麦组的平均舒张压在统计学上显着低于对照组,而高密度脂蛋白胆固醇较高(p <0.05)。藜麦组参与者的转化率(7.8%)在统计学上显着低于对照组(20.3%)(χ2= 12.760,p = 0.002)。逻辑回归分析表明,藜麦消耗是防止糖尿病进展的保护因素(p <0.05)。