背景与目的 .组蛋白去乙酰化酶1(HDAC1)编码的蛋白质是组蛋白去乙酰化酶复合物的组成部分。HDAC1的异常表达与细胞增殖、分化、转录和翻译密切相关。通过不断筛选与肺腺癌(LUAD)变化相关的基因,形成基因网络,探索肿瘤发病机制和新的治疗靶点。方法 .利用相关网站和数据库(TCGA和GEO数据库)评估HDAC1基因生存分析及其在LUAD的表达。通过数据挖掘,确定HDAC1突变的频率和类型,获得基因相互作用网络的相关热图,完成基因本体和功能富集分析,了解HDAC1的药剂学。结果 .发现HDAC1的表达与LUAD患者的预后有关。基因表达分析中,HDAC1在LUAD中高表达,HDAC1相互作用基因网络(MARCKSL、eIF3I)与细胞基因表达密切相关。功能网络分析显示HDAC1的表达与细胞周期G1-S期的监控点及Notch信号通路(CSL转录因子)的激活有关,参与细胞增殖分化过程及基因表达与新的治疗靶点相关。结论本研究数据挖掘揭示了LUAD中HDAC1的表达及潜在调控因素,为研究LUAD中HDAC1的发生、发展及治疗奠定了基础。
肌肉修复和再生是复杂的过程。在Duchenne肌肉营养不良(DMD)中,这些过程被功能性肌营养不良蛋白的丧失所破坏,功能性肌营养不良蛋白是跨膜肌营养不良蛋白相关的糖蛋白复合物的关键部分,使肌肉稳定,使肌肉稳定,使肌肉逐渐逐渐丧生,并逐渐丧生,并置于误解,并逐渐陷入困境。作为DMD病理学的一部分,组蛋白脱乙酰基酶(HDAC)活性被组成率提高,从而导致表观遗传变化和抑制肌肉再生因子,慢性炎症,纤维化,脂肪形成和脂肪形成。HDAC抑制作用,作为一种肌肉营养不良的治疗方法,显着地,它独立于特定的遗传突变,使其可能适合所有DMD患者。本综述讨论了HDAC抑制如何以多目标的作用方式解决DMD病理生理学,并总结了有关HDAC抑制基本原理的最新证据,该基本原理用Givinostat抑制HDAC的原理,该抑制作用现已在6岁及6岁以上的患者中批准美国食品和药物治疗DMD的美国食品和药物治疗。
1 1表遗传学和细胞命运中心,CNRS /PARISITéParisCité,巴黎,法国2 Arthur和Sonia Labatt脑肿瘤研究中心,病假儿童医院,多伦多,多伦多,加拿大,加拿大玛格丽特癌症中心,玛格丽特癌症中心,大学健康网络,大学街101号,多伦多,多伦多,M5G1L7,M5G1L7 INSERM,CHU LILLE,U1192 -PROTéomiqueréponseinfymatoirespectrométrieDeMasse- Prism- Prism- F -59000法国Lille,法国6生物科学系,纽约大学,纽约,纽约,10027,10027 York, NY 10032, USA 9 CNRS UMR9019 Genome Integrity and Cancers, Université Paris-Saclay, Gustave Roussy Institute, Villejuif, France 10 Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA 11 Protein Analysis Unit, BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University, Martinsried, Germany 12 Department of美国波士顿的小儿肿瘤学,达纳 - 法伯波士顿儿童癌和血液疾病中心1表遗传学和细胞命运中心,CNRS /PARISITéParisCité,巴黎,法国2 Arthur和Sonia Labatt脑肿瘤研究中心,病假儿童医院,多伦多,多伦多,加拿大,加拿大玛格丽特癌症中心,玛格丽特癌症中心,大学健康网络,大学街101号,多伦多,多伦多,M5G1L7,M5G1L7 INSERM,CHU LILLE,U1192 -PROTéomiqueréponseinfymatoirespectrométrieDeMasse- Prism- Prism- F -59000法国Lille,法国6生物科学系,纽约大学,纽约,纽约,10027,10027 York, NY 10032, USA 9 CNRS UMR9019 Genome Integrity and Cancers, Université Paris-Saclay, Gustave Roussy Institute, Villejuif, France 10 Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA 11 Protein Analysis Unit, BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University, Martinsried, Germany 12 Department of美国波士顿的小儿肿瘤学,达纳 - 法伯波士顿儿童癌和血液疾病中心
组蛋白去乙酰化酶 (HDAC) 催化组蛋白和非组蛋白上乙酰化修饰的去除,从而调节基因表达和其他细胞过程。HDAC 抑制剂 (HDACi) 是一种已获批准的抗癌药物,有望成为治疗心脏病的新疗法。在许多心脏病临床前动物模型中都观察到了 HDACi 的心脏保护作用。已经开发了遗传小鼠模型来了解每种 HDAC 在心脏功能中的作用。一些发现是有争议的。在这里,我们概述了 HDACi 和 HDAC 在生理或病理条件下如何影响心脏功能。我们重点关注锌依赖性经典 HDAC 的体内研究,强调涉及心脏肥大、心肌梗死 (MI)、缺血性再灌注 (I/R) 损伤和心力衰竭的疾病状况。特别是,我们回顾了无偏组学研究如何帮助我们理解 HDACi 和 HDAC 对心脏影响的潜在机制。
引言脑动脉畸形(AVM)是最有血管畸形(1,2);这些由动脉(A-V)分流器组成,这些分流器直接从动脉传递到静脉的血液,绕过脑组织,这些脑组织已变得异常(1-4)。(1-4)。由于A-V分流器中的血管异常和血液升高引起的,血管最终可能破裂并引起与高死亡率相关的出血性中风(1-5)。生存的患者,许多人遭受永久残疾,神经系统缺陷,癫痫发作和头痛(1-4)。当前,没有针对脑AVM的主要预防措施(2)。骨形态发生蛋白(BMP)信号与脑AVM有关。BMP I型受体激活素受体样激酶1(ALK1)的突变导致遗传性出血性尾2型(HHT2),其特征是多个器官中存在AVM(6,7)。ALK1共肽的内生突变导致HHT1(8,9)。BMP抑制剂矩阵GLA蛋白(MGP)由ALK1信号传导诱导,并为BMP活性提供反馈调节(10-14)。 MGP的损失导致大脑,肺,肾脏和视网膜的AVM(13、15,矩阵GLA蛋白(MGP)由ALK1信号传导诱导,并为BMP活性提供反馈调节(10-14)。MGP的损失导致大脑,肺,肾脏和视网膜的AVM(13、15,
等离子体,单核细胞,中性粒细胞或血小板的增殖增加(1、3、4)。大约30%的被诊断为MD的患者最终患有急性髓样白血病(AML)(5)。eVI1首先被鉴定为具有逆转录病毒诱导的髓样恶质的小鼠中生态病毒整合的常见位点(6)。人类EVI1(MECOM)基因位于Chro-Mosome 3Q26上,EVI1的多种同工型在MECOM基因座(7)中编码。3q26染色体的重排,导致EVI1的上调,经常发生在包括MDS,AML和慢性髓样白血病(CML)在内的髓样恶性疾病中(8-10)。MDS,AML和CML具有INV(3)/T(3; 3)重排通常具有相似的病理特征,预后不良(8、11、12)。It was reported that chromosome rear- rangements cause overexpression of EVI1 due to relocation of enhancers, including GATA binding protein 2 (GATA2) enhancer in inv(3)/t(3;3) (q21q26) (13, 14) and MYC super-enhancer in t(3;8) (q26;q24) close to the EVI1 gene (15).EVI1过表达可能发生在没有3染色体重排的MDS患者中。EVI1上调
poly(ADP-核糖)聚合酶1(PARP1)由于PARP抑制剂特异性杀死通过同源重组而缺乏DNA修复的肿瘤的能力,因此已成为癌症疗法的核心靶标。在DNA损伤后,PARP1迅速与DNA断裂结合并触发ADP -Ribosylation信号传导。ADP-核糖基化对于募集各种因素到损害部位以及及时的DNA断裂中PARP1的分解很重要。的确,在存在PARP抑制剂的情况下,PARP1在DNA断裂处被困,这是这些抑制剂细胞毒素的基础机制。因此,任何影响捕获的细胞过程都被认为会影响PARP抑制剂效率,这可能会导致接受这些药物治疗的患者获得的耐药性。DNA损伤后有许多ADP-核糖基化靶标,包括PARP1本身以及组蛋白。最近的发现报道说,PARP1的自动修饰促进了其从DNA病变中释放,但其他ADP核糖基化蛋白对这一过程的潜在影响仍然未知。在这里,我们证明了组蛋白ADP - 核糖基化对于及时从病变中耗散PARP1的核糖基化也至关重要,从而有助于细胞对PARP抑制剂的耐药性。考虑ADP-核糖基化和其他组蛋白标记之间的串扰,我们的发现开辟了有趣的观点,可以开发出更有效的PARP抑制剂 - 驱动的癌症疗法。
• 方法 2(亲和纯化) 1. 洗涤 4 o C(冰上)用洗涤缓冲液洗涤珠子 3 次。 2. 添加样品溶液 将 1000ul HeLa 细胞提取物添加到珠子中。 3. 反应 4 o C 孵育 240 分钟。 4. 洗涤 除去样品溶液。4 o C(冰上)用洗涤缓冲液洗涤珠子 3 次。 5. 洗脱 伏立诺他洗脱: - 添加 40ul 洗脱缓冲液并重新悬浮珠子。在 98 o C 下煮沸 5 分钟并除去珠子。 伏立诺他洗脱: + 在洗涤缓冲液中加入 30ul 25mM 伏立诺他并重新悬浮珠子。将管放在冰上一小时,通过间歇轻拍使结合的蛋白质洗脱。旋转后,磁性分离。将上清液转移到新的干净管中98 o C 煮沸 5 分钟。 6. 通过 SDS-PAGE 和银染分析样品
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。