+HUHZHSUHVHQWWZRVLJQ 4QGLQJVWKDWFRQWULEXWH XQGHUVWDQGLQJRI 白色念珠菌DOLIH-WKUHDWHQLQJ KXPDQIXQJDOSDWKRJHQ)LU HVWDEOLVKWKDWWKH 白色念珠菌UHIHUHQFHVWUDLQLVGHIHF 51$LQWHUIHUHQFHDIXQGDP UHJXODWRU\SDWKZD\6HFRQ GLVFRYHUWKDWLQFRQWUD UHIHUHQFHVWUDLQWKHYD PDMRULW\RIC。白色念珠菌LVRODWH FRQWDLQDQDFWLYH51$ LQWHUIHUHQFH51$ LSDWKZ VLOHQFHVJHQHH[SUHVVLRQ &RQVLGHULQJWKDW51$ LSOD FHQWUDOUROHVLQUHYHUVL JRYHUQLQJJHQHH[SUHVVLRQ JHQRPHVWDELOLW\GUXJUH DQGFRXQWHULQJYLUDOLQIH RXU4QGLQJRHUVYDOXDEOH LQVLJKWVLQWRWKHELRORJ GDQJHURXVIXQJDOSDWKRJHQ
自动文本识别是一个困难但重要的问题。它可以概括为:如何使计算机能够识别预定义字母表中的字母和数字,可能使用上下文信息。已经进行了各种尝试来解决这个问题,使用不同的特征和分类器选择。自动文本识别系统在准确性方面已经达到了人类的表现,并且在单一大小、单一字体、高质量、已知布局、已知背景、文本的情况下,速度超过了人类的表现。当上述一个或多个参数发生变化时,问题变得越来越困难。特别是,尽管近四十年来不断进行研究,但要达到人类在识别不同大小、不同风格、未知布局、未知背景的草书方面的表现,远远超出了当今算法的范围。在本报告中,我们详细分析了该问题,介绍了相关困难,并提出了一个解决自动文本识别问题的连贯框架。
Wojskowe Zakłady Uzbrojenia S.A. 获得了美国国防部 AIMS 认证,该认证表明升级后的 SA-6、KUB-1S91M2-P1 系统(证书编号 CL 0621405RC)以及升级后的 SA-8、OSA-P 系统(证书编号 CL 0621405RC)在平台级别上与 NATO MARK XII 识别系统具有互操作性,这些系统与 Wojskowe Zakłady Uzbrojenia S.A. 生产的 IFF 系统(SIC-11 / 12)集成,并配置了 KIV-16 Mod4。该证书证实 Wojskowe Zakłady Uzbrojenia S.A. 全面实施了用于作战行动的最新加密技术,目前该技术在北约后苏联导弹系统上使用。这样,该系统在北约防空系统的联合行动中就获得了完全的可靠性。目标识别“敌我”系统——Mark XII 模式 4、NSM、升级模式 5 和模式 S 是最新一代系统,集成了从可见光到热波段的被动光电传感器作为观察、检测、识别和识别空中目标的手段,以及北约标准 Mark XII 模式 4 中的主动 IFF 识别系统,配有主动加密计算机,并有可能扩展到北约标准 Mark XIIA 模式 5 和模式 S。
时空卷积通常无法学习视频中的运动动态,因此需要一种有效的运动表示来理解自然界中的视频。在本文中,我们提出了一种基于时空自相似性(STSS)的丰富而鲁棒的运动表示。给定一系列帧,STSS 将每个局部区域表示为与空间和时间中邻居的相似性。通过将外观特征转换为关系值,它使学习者能够更好地识别空间和时间中的结构模式。我们利用整个 STSS,让我们的模型学习从中提取有效的运动表示。我们所提出的神经块称为 SELFY,可以轻松插入神经架构中并进行端到端训练,无需额外监督。通过在空间和时间上具有足够的邻域体积,它可以有效捕捉视频中的长期交互和快速运动,从而实现鲁棒的动作识别。我们的实验分析表明,该方法优于以前的运动建模方法,并且与直接卷积的时空特征互补。在标准动作识别基准 Something-Something-V1 & V2、Diving-48 和 FineGym 上,该方法取得了最佳效果。
请以以下方式引用本文:Girish and Sheltzer,(2020)。一种用于识别癌症遗传依赖性的 CRISPR 竞争检测方法,Bio-protocol 10 (14): e3682。DOI:10.21769/BioProtoc.3682。
摘要 - 识别周围环境的物理特性对于机器人的运动和导航对于处理非几何危害(例如湿滑和可变形地形)至关重要。机器人在接触之前预测这些极端的物理特性将是很大的好处。但是,从视力中估算环境物理参数仍然是一个开放的挑战。动物可以利用他们先前的经验以及对自己所看到的东西和感受的了解来实现这一目标。在这项工作中,我们为基于视觉的环境参数估计提出了一个跨模式的自我监督学习框架,这为未来的物理范围内的运动和导航铺平了道路。我们弥合了在模拟中训练和识别视力的物理地形参数的现有政策之间的差距。我们建议在模拟中训练物理解码器,以预测多模式输入的摩擦和刚度。训练有素的网络允许以自我监督的方式将现实世界图像标记,以在部署过程中进一步训练视觉网络,这可以密集地预测图像数据的摩擦和僵硬。我们使用四倍的Anymal机器人在模拟和现实世界中验证物理解码器,表现优于现有基线方法。我们表明,我们的视觉网络可以预测室内和室外实验中的物理特性,同时允许快速适应新环境。- 项目页面https://bit.ly/3xo5aa8 -
拥有精确有效的监测系统来评估河流状态的重要性在于其预测和应对可能导致洪水和溢出的极端天气事件的能力。与水有关的灾难,例如山洪洪水,可能会对基础设施,经济以及最重要的是对人口安全的影响。因此,高级河流识别系统的实施成为SIT(首字母或首字母缩写)的战略优先事项。本报告旨在概述通过图像在河流识别领域使用的最新技术,方法和方法。通过对专业文献的审查,将探索使用计算机视觉,遥感,人工智能以及其他相关学科的河流检测和跟踪学科的最新进展。此外,将解决在其他地区和组织中实施类似系统的成功案例和最佳实践。最终,本文将成为为其河流识别项目寻找最合适和最有效的解决方案的起点。此处收集的信息将为理解基于图像的河流监测系统的计划和执行中必须考虑的可能性,挑战和关键注意事项提供稳固的基础,以确保人口和自然环境的安全和福祉。这些要素来自各种信息和经验的来源。基于图像的河流识别系统的实施项目测量河床并确定溢流的风险是在必须全面考虑几个要素的情况下设定的。
大自源性是一个细胞内降解过程,需要多个自噬相关(ATG)基因。在这项研究中,我们使用自噬型号报告基因GFP-LC3-RFP进行了全基因组筛选,并鉴定出TMEM41B作为一种新型ATG基因。TMEM41B是一种位于内质网(ER)中的多层膜蛋白。它在液泡膜蛋白1(VMP1)中也发现了一个保守的结构域,这是另一种ER多跨度膜蛋白,对于自噬,酵母菌TVP38必不可少的,以及推定的半转生蛋白的细菌deda家族。TMEM41B的缺失阻止了早期的自噬体的形成,从而导致ATG蛋白和小囊泡的积累,但不会拉长自噬体样结构。此外,在TMEM41B -KNOCKOUT(KO)细胞中积累的脂质液滴。TE表型类似于VMP1 -KO细胞的表型。的确,TMEM41B和VMP1在体内和体外形成了复杂的复杂,VMP1的过表达恢复了TMEM41B -KO细胞中的自噬量。TESE结果表明,TMEM41B和VMP1在自噬体形成的早期步骤中起作用。
通讯作者:shahabbayatzadeh@gmail.com https://doi.org/10.22105/mrpe.2025.499771.1137 被许可人。绩效评估的现代研究。本文为开放获取文章,根据知识共享署名 (CC BY) 许可条款和条件分发(http://creativecommons.org/licenses/by/4.0)。
本文介绍了我们针对 2021 年人工智能城市挑战赛 (AICITY21) 的 Track2 的解决方案。Track2 是一个使用真实世界数据和合成数据的车辆重新识别 (ReID) 任务。在本次挑战中,我们主要关注四个点,即训练数据、无监督领域自适应 (UDA) 训练、后处理、模型集成。(1)裁剪训练数据和使用合成数据都可以帮助模型学习更多判别性特征。(2)由于测试集中有一个在训练集中未出现的新场景,因此 UDA 方法在挑战中表现良好。(3)后处理技术包括重新排名、图像到轨迹检索、摄像头间融合等,可显著提高最终性能。(4)我们集成了基于 CNN 的模型和基于 Transformer 的模型,它们提供了不同的表示多样性。通过上述技巧,我们的方法最终取得了 0.7445 的 mAP 分数,在比赛中获得第一名。代码可在 https://github.com/michuanhaohao/AICITY2021_Track2_DMT 获得。