CMOS 技术的巨大成功以及由此带来的信息技术进步,无疑归功于 MOS 晶体管的微缩。三十多年来,MOS 晶体管的集成度和性能水平不断提高。随后,为了提供功能更强大的数字电子产品,MOSFET 的制造尺寸越来越小、密度越来越高、速度越来越快、成本越来越低。近年来,微缩速度不断加快,MOSFET 栅极长度已小于 40 纳米,器件已进入纳米世界(图 1)[1]-[2]。所谓的“体”MOSFET 是微电子技术的基本和历史性关键器件:在过去三十年中,其尺寸已缩小了约 10 3 倍。然而,体 MOSFET 的缩放最近遇到了重大限制,主要与栅极氧化物(SiO 2 )漏电流 [3]-[4]、寄生短沟道效应的大幅增加以及迁移率急剧下降有关 [5]-[6],这是由于高度掺杂的硅衬底正是为了减少这些短沟道效应而使用的。
A. Bieniek-kaczorek,A。Paśnikowska,P.Wiśniewski,M.Słowikowski,M。Juchniewicz,J。Jureńczyk,M。Liebert,K.Pierściński,D.Pierściński,D。Pierścińska
随着集成电路 (IC) 技术的日益复杂,其物理设计和生产变得越来越具有挑战性。布局一直是 IC 物理设计中最关键的步骤之一。经过数十年的研究,基于分区、基于分析和基于退火的布局器不断丰富布局解决方案工具箱。然而,包括运行时间长和缺乏泛化能力在内的开放性挑战继续限制现有布局工具的更广泛应用。我们利用强化学习 (RL) 的进步,设计了一种基于学习的布局工具,该工具基于强化学习 (RL) 和模拟退火 (SA) 的循环应用。结果表明,RL 模块能够为 SA 提供更好的初始化,从而产生更好的最终布局设计。与其他近期基于学习的布局器相比,我们的方法主要不同之处在于它结合了 RL 和 SA。它利用 RL 模型在训练后快速获得良好粗略解决方案的能力和启发式方法实现解决方案贪婪改进的能力。
相对于激光束。图 2a 描绘了 FLW 过程的图形表示。FLW 是一种串行制造技术,与光刻相比可能并不适合大规模生产。然而,它的速度和简单性使其成为至少在量子技术等快速发展领域中规模生产的有吸引力的选择。可以实现的折射率变化很小,因此设备不如硅或氮化硅等其他平台那么小型化。然而,FLW 因允许三维电路布局(图 2b-c)、与玻璃以外的各种材料兼容(促进复合设备的混合集成)以及与标准光纤的低损耗连接而脱颖而出。FLW 只是通过超短激光脉冲与透明材料的非线性相互作用实现的几种微加工工艺之一。另一个例子是飞秒激光烧蚀,它可以精确去除材料,从而形成三维微结构,如图 2a 所示的微沟槽。将飞秒激光烧蚀与激光烧蚀相结合,可以提高集成光子器件的性能,例如可编程光子集成电路 [5],它集成了波导、电可编程干涉仪和空心结构,从而实现了非常低的
可控硅整流器 (SCR) 因其对 ESD 应力的高稳定性而成为最具吸引力的 ESD 防护元件 [1]。然而,传统 SCR 器件具有较高的触发电压 (Vt1) 和较低的维持电压 (Vh) [2,3]。因此,它无法在大多数电路中提供有效的 ESD 防护。为了解决这些问题,许多基于局部的改进 ESD 防护方案被提出,例如改进型横向 SCR (MLSCR)、低触发 SCR (LVTSCR) 和二极管串触发 SCR (DTSCR) [4,5]。其中,DTSCR 能够实现非常低且灵活的触发电压,近年来许多基于 DTSCR 的改进结构被提出。例如,Chen、Du 等人提出了一种称为 LTC-DTSCR 的新型 DTSCR [6]。 LTC-DTSCR通过抑制DTSCR寄生SCR的触发,进一步降低了触发电压。但DTSCR结构相对较高的过冲电压和较慢的导通速度限制了其在充电器件模型(CDM)保护中的应用[7]。此外,DTSCR不适用于2.5 V及以上电路的ESD防护,因为触发二极管数量的增加会因达林顿效应而导致较大的漏电和闩锁风险。LVTSCR与传统SCR存在同样的问题:触发电压过高,难以调整以适应先进CMOS工艺的ESD设计窗口。目前,[8,9]中已提出了几种改进的LVTSCR结构,但它们均侧重于提高保持电压,这些器件的触发电压仍然较高(~8 V)。此外,还有许多新型SCR结构被提出。 Lin 等通过在 SCR 中引入两个栅极,实现了低触发电压、低漏电、低寄生电容的新型 SCR 器件 [10],但需要外部 RC 电路辅助触发,会造成巨大的额外面积消耗。P. Galy 等将 SCR 嵌入 BIMOS 中 [11],实现了超紧凑布局、低触发电压、低导通电阻,但其保持电压较低,如果施加的电压域较高,会增加闩锁风险。
摘要 - 在1030 nm波长附近的运行的主动循环集成技术已在炮码(GAAS)光子集成电路平台上开发。该技术利用量子井(QW)稍微垂直从波导的中心偏移,然后在上覆层再生之前有选择地去除以形成主动和被动区域。活性区域由砷耐加仑(INGAAS)QWS,砷耐磷化物(GAASP)屏障,GAAS单独的配置异质结构层和铝铝(Algaas)甲板组成。Fabry Perot激光器具有各种宽度和表征,表现出98.8%的高注射效率,内部活跃损失为3.44 cm -1,内部被动损失为3 µm宽波导的4.05 cm -1。3 µm,4 µm和5 µm宽的激光器在100 MA连续波(CW)电流(CW)电流和阈值电流低至9 mA时显示出大于50 MW的输出功率。20 µm宽的宽面积激光器在CW操作下显示240 MW输出功率,35.2 mA阈值电流,低阈值电流密度为94 A/cm 2,长2 mm。此外,这些设备的透明电流密度为85 A/cm 2,良好的热特性具有T 0 = 205 K,Tη= 577K。
复旦微电是一家从事超大规模集成电路的设计、开发、测试,并为客户提供系统解决方案的专业公司。公司目前建立了健全安全与识别芯片、非扩散芯片、智能电表芯片、FPGA芯片和集成电路测试服务等产品线,产品广泛涉及金融、社会保障、防伪溯源、网络通讯、家电设备、汽车电子、工业控制、信号处理、数据中心、人工智能等领域。
除了是开启众多大众市场应用的消费电子设备的关键之外,半导体对于不那么光鲜和友好的系统也是必不可少的。工业环境可能极其恶劣,商业电子产品将无法生存。但是,仍然需要将电子设备添加到机械设备中以增加功能并扩展性能。某些应用必须在商业电子产品中使用的许多材料的熔点之外运行。这些包括飞机和涡轮发动机控制装置,以及用于能源勘探的监视器和井下钻井工具,图 1。这些环境具有极端温度、振动、压力和湿度水平以及其他压力因素。