•蛋白质科学中的数据库和软件工具•先进的风味化学•用于分析模型细菌中蛋白质复合物的方法•鉴定和表征食物传播的微生物•综合生物食品工程I - III•生物乙醇和蒸馏液和蒸馏精神•综合化学技术•杂种化学技术•杂种化学技术•遗传性化学技术, Process Engineering Techniques for Cereal Processing • Soft Matter Science I – Food Rheology and Structure • Food Process Design I – Efficient Processing and Transport Phenomena • Food Process Design II • Technologie Pflanzlicher Lebensmittel (taught in German) • Drying, Granulation and Instantization • Computational Thinking • Advanced Technologies for Dairy Products and Alternatives • UNIcertIII English for Scientific Purposes • Internship (R&D placement)
FSTC 311 食品加工原理 学分 3。2 个讲座小时。3 个实验室小时。罐装、冷冻、脱水、腌制和特色食品制造的原理和实践;各种制备、加工、包装和使用添加剂技术的基本概念;参观加工厂。先决条件:FSTC 201;大三或大四分类或系主任或讲师批准。FSTC 312 食品化学 学分 3。3 个讲座小时。主要食品成分(水、碳水化合物、脂质、蛋白质、植物化学营养品)的基本和相关化学和功能以及食品乳化系统、酸、酶、凝胶、颜色、味道和毒素的研究。先决条件:FSTC 201;CHEM 227;CHEM 237 或系主任或讲师批准。FSTC 313 食品化学实验室 学分 1。3 个实验室小时。实验室练习从基础化学而不是分析角度研究特定分子,如食品酸、酶、色素和风味,以及食品中的化学相互作用,如氧化反应、乳化系统和功能特性。先决条件:FSTC 201;CHEM 227;CHEM 237 或经系主任或讲师批准。FSTC 314 食品分析 学分 3。1 个讲座小时。4 个实验室小时。用于测定食品成分的选定标准方法;用于食品分析的经典和仪器技术的原理和方法。先决条件:FSTC 201;FSTC 311;CHEM 227;CHEM 237 或经系主任或讲师批准。FSTC 315/AGSM 315 食品加工工程技术 学分 3。2 个讲座小时。2 个实验室小时。基础力学、食品和加工材料的物理和热性质、传热、质量和能量平衡、湿度测定法(空气性质)、绝缘。先决条件:PHYS 201 或 PHYS 206 成绩为 C 或更高,或经讲师批准。交叉列表:AGSM 315/FSTC 315。FSTC 316 替代蛋白质生产的发酵技术学分 3。3 个讲座小时。探索发酵科学、细胞农业、替代蛋白质和生物加工、微生物群落和食品安全的实验室技术。先决条件:大三或大四分类。FSTC 319 微生物检测和表征的分子方法学分 3。2 个讲座小时。2 个实验室小时。探索在发酵和酿造等行业中识别和表征微生物群落至关重要的分子方法。先决条件:BIOL 111、BIOL 112 或 BIOL 206;大三或大四分类。
巴黎,充满活力的首都法国,是历史悠久的魅力与现代精致的和谐融合。坐落在塞纳河的河岸上,巴黎散发着一种独特的氛围,其标志性地标,迷人的街道和对艺术和文化的承诺。巴黎最具标志性的地标之一是埃菲尔铁塔,这是城市明信片完美的象征,可从其观察甲板中欣赏到壮丽的景色。塔周围的区域充满了活动,拥有众多咖啡馆,酒吧和餐馆,当地人和游客都聚集在活跃的气氛中。塞纳河河也是游艇游览的起点,使游客可以探索城市的水道。巴黎以其对文化和艺术的奉献精神而闻名,其广泛的博物馆,美术馆和历史古迹的网络为例。卢浮宫博物馆拥有令人印象深刻的艺术品收藏,跨越了几个世纪,并拥有著名艺术家的作品,例如Leonardo da Vinci,Michelangelo和Rembrandt。标志性的巴黎圣母院大教堂可瞥见哥特式建筑,而Sacréc– urbasilica可以从蒙马特的山顶地点欣赏城市的全景。在城市景点之外,巴黎为户外休闲和放松提供了充足的机会。历史悠久的卢森堡花园提供了一个和平的静修,并带有修剪精美的草坪,喷泉和雕塑,为游客提供了巴黎魅力的独特视角。同时,Tuileries Garden提供了对法国历史和花园设计的洞察力,使游客能够探索其宏伟的道路和历史特征。除了其文化景点之外,巴黎还为户外休闲和放松提供了充足的机会。是沿着风景如画的塞纳河银行漫步,探索城市的众多公园,还是在街上享受悠闲的自行车,巴黎为每个人提供了一些享受其历史悠久的魅力和现代精致的东西。
本文探讨了人工智能 (AI) 在食品科学和技术中的整合,强调了其最先进的应用和相关挑战。人工智能正在重塑各个领域,包括食品质量控制、供应链优化、安全监控和产品开发。机器学习、预测分析和计算机视觉等创新技术正在被部署,以提高食品安全和质量、简化供应链和优化农业实践。值得注意的应用包括实时监测环境条件、微生物检测和个性化营养建议。然而,在食品技术中采用人工智能并非没有障碍。对数据隐私的担忧、人工智能算法中的潜在偏见、监管挑战以及劳动力的技能差距对实施构成了重大障碍。此外,人工智能技术对环境的影响需要仔细考虑以确保可持续的实践。使用人工智能的组织必须应对复杂的数据安全和隐私挑战,尤其是在 GDPR 等法规的背景下。解决这些挑战需要采取多方面的方法,包括旨在保护个人数据的技术、政策和实践。组织可以更好地确保遵守数据保护法,同时在其 AI 计划中培养信任和问责制。本文强调了技术人员、食品科学家和政策制定者之间的合作对于有效应对这些挑战的重要性。通过利用 AI 的功能,同时确保合乎道德和负责任的做法,食品行业可以提高其弹性、效率和可持续性。最终,AI 的持续发展有望改善全球食品领域的食品安全、质量和整体公共卫生结果。关键词:AI;人工智能;食品科学与技术;微生物学;生物技术
抽象的磷酸盐 - 溶解细菌是植物生长的细菌之一,可通过多种途径溶解土壤中不溶性的磷酸盐并促进植物生长。因此,它提供了一种替代选择,而不是应用破坏土壤化学和生态平衡的化学肥料。尽管最近关于磷酸盐溶解细菌的研究最近有所增加,但有关薄荷和茴香根际的研究仍然有限。需要研究可以溶解磷酸盐并替代化学肥料的不同根际局部细菌。已经确定,从薄荷(Mentha Piperita L.)和茴香(Foeniculum vulgare L.)根瘤菌获得的53种细菌分离株中,有15种在Pikovskaya Agar(PKA)介质上使用Maldi-tof MS MAST形成了一个透明(Halo)根源。评估了这些分离株的形态,生化和IAA产生以及通过NBRIP肉汤培养基中分离株对磷酸盐溶解的定量测量。从枯草芽孢杆菌MMS -7中注意到溶解度为281.6 mg l -1的最高效率。接下来是荧光症MMS -11,溶解值分别为263.4 mg l -1和苏云金芽孢杆菌MMS -3,溶解值分别为172.1 mg l -1。在磷酸盐溶解细菌分离株中,P溶解指数在PKA琼脂培养基上为1.2-3.7。此外,使用枯草芽孢杆菌MMS -7,在23.38 µg mL -1下的最高IAA产生。关键字:Mentha Piperita,foeniculum vulgare,磷酸盐溶解细菌,MALDI TOF MS接下来是荧光症MMS -11,其值为19.72 µg ml -1和苏云金芽孢杆菌,使用MMS -3,值为18.98 µg ml -1。这项研究表明,选定的局部分离株可以用作有效的基于磷酸盐的微生物肥料。
食品质量控制模块完成后,学生应能够确定重要的质量参数,特性/特征/特征,这些原材料,成分和产品确定其适用性,应用和安全性生产的安全性。学生还应该能够使用合适的测试设备和方法进行高质量的检查,以评估原材料,成分和产品是否符合质量和安全标准。
图1。生物启发的多尺度调节,通过模仿肌腱到骨接头的界面建筑,对用前所未有的力学(a)进行工程水凝胶,通过结合纳米级矿物质,以超高的刚度和韧性进行设计。(b)与肌腱类似,具有优先排列结构的水凝胶以及链间/链氢键与各向异性力学和优质疲劳性抗性一起赋予。(c)通过设计纤维结构,扭曲的水凝胶纤维具有较高的韧性,柔韧性和抗疲劳性。(d)水凝胶中的多尺度断裂机制,突出了各种结构元素的贡献,例如微/纳米尺度相,微/纳米尺度纤维和///链内链链氢键。在多个长度尺度上的模态,协同作用有助于改善力学。方程将总断裂能(γ)作为内在和外部断裂能的总和(γ0 +γd)。
在这篇文章中,本期刊的编辑团队的成员,几位国际认可的专家讨论了在食品科学和食品学中确定的当前热门话题的选择。主题包括食品科学和食品学的主要领域,即食品安全,食品真实性,食品加工和食品生物活性。从逻辑上讲,一些讨论的主题涉及上述主要领域之一。,讨论的主题是使用分析纳米技术,纳米测量学,纳米纹状体;基于MS和NMR的有机污染物的测定;微塑料和纳米塑料对食物的影响或植物毒素对食物的污染。关于粮食真实性,本文讨论了MS,NMR,生物传感器和食品认证食品学趋势的作用。在食品加工方面,这项工作显示了有关新型加工技术的有趣观点,食物加工对肠道菌群的影响或次生代谢物和大分子之间的相互作用;积极包装的发展以及在食品包装中引入再生塑料的潜在影响;食品副产品生物活性化合物的新绿色提取和封装策略;以及天然化合物/提取物/植物油和精油的抗生物胶片能力。我们预计这些热门话题将详细阐述将促进食品科学和食品学方面的进一步研究。食物生物活性及其健康与健康之间的关系包括生物活性化合物的生物利用度和生物恢复性;营养素与生物系统相互作用的新趋势和挑战;食物基质如何影响营养和生物活性化合物的生物学能力;或通过一项健康概念研究生物多样性,食品和人类健康。
o 选项 E:两个研究项目(每门课程 8 个学分;共 16 个学分)——无专业经验行业实习 • 本课程中的某些课程可能包含注册限制,需要获得校长许可或其他批准。学生必须向农业与食品可持续发展学院发送电子邮件以获得限制课程的批准,然后才能在 SI-Net 上注册。 重要提示 本文件中包含的信息仅供一般建议。学生必须遵守课程和课程网站上列出的课程规则和要求。此计划必须与您的课程时长课程列表和课程规则结合使用。学生需要检查他们在学习计划中选择的所有课程的先决条件、不兼容性和限制。未来的课程设置可能会发生变化。本文件不作为进度或毕业检查。有关进度或毕业检查的更多信息,请联系您的学校。 进一步协助 请查看此学习计划文件中的常见问题 (FAQ) 页面。如果您需要进一步的建议或有其他疑问,请联系:农业与食品可持续发展学院电子邮件:agriculture@enquire.uq.edu.au 加顿校区电话:+61 7 5460 1321 圣卢西亚校区电话:+61 7 3365 1171
我希望我们在霜冻之前收到一些急需的降水,以改善牧场条件。但是,缩短的日长度和挥之不去的霜冻将限制饲料的产生。制定您的计划并准备采取行动,而不是希望下周下雨。重新思考高风险的储藏罐管理米歇尔·阿诺德(Michelle Arnold)博士 - DVM,MPH英国反刍动物扩展兽医牛呼吸疾病(“ BRD”)或“运输发烧”或“运输发烧”,也称为支气管内肿瘤,也称为Posteaned(Stocker)Calves的疾病和死亡的最常见原因(当时的疾病),但在packeined(Stocker)calves中均具有巨大的污染。传统上,人们认为通过疫苗接种的疾病预防是改善Stocker健康结果的答案,但是由于发病率和死亡率继续上升,目前的疫苗接种建议并不能遇到挑战。越来越多的研究重点是上呼吸道中正常,健康的“微生物群”(细菌种群)的重要性,以维持小腿健康并提高免疫力。这种正常的微生物种群通过多种机制进行调节或对照,包括1)与养分的致病生物(不良错误)竞争,2)通过募集白细胞捍卫肺组织和4)抗体生产,以保护抗体的生产,专门针对病原体的生产,3)通过募集白细胞来保护肺泡,以保护抗体,以保护抗体,以保护抗体,以保护抗体,以促进抗体,以促进抗体,以促进抗体,以促进抗体,以促进抗体,以促进抗体,以保护MIGA,MIGA,MIGA,MIGA,MIGA,MIGA,MIGA。然而,被诊断为BRD的牛具有明显的破坏菌群,而相反,可致病的细菌蓬勃发展。检查在刺激免疫系统的同时保留正常微生物群的方法是目前正在勘探的新边界,以减少疾病,死亡损失和抗菌剂使用,尤其是在Stocker Calf部门。是时候限制对呼吸菌群产生深远影响的管理程序和治疗方法以改善高风险储藏箱的健康吗?Stocker行业对于肯塔基州的牛/小牛业务的经济成功至关重要。通过销售谷仓在农场上销售的小牛通常绝不是,形状或形式,准备进入饲料批量以喂食以屠宰体重。这些犊牛经常以小团体(有时是10只或更少的犊牛)到达船上的码头,这些犊牛是在拖车上断奶的。许多犊牛是轻量级(<400#),营养和微量矿物质状态差,未接种疫苗,男性是完整的公牛,一部分小母牛犊牛怀孕了。到达院子后,小牛与多个来源的小牛相称,大多数均具有未知的疫苗接种和驱虫史,然后称重,出售并最终运送到储藏室或背景