GF 无麸质 NF 无坚果 DF 无乳制品 VG 纯素 V 素食 以上食品均采用无麸质食材制作。但是,我们的厨房并非完全不含麸质。如果您有食物过敏或敏感,请告知我们。 *这些食品可能是现点现做的,可能含有生的或未煮熟的食材。食用生的或未煮熟的肉类、家禽、海鲜、贝类或鸡蛋可能会增加您患上食源性疾病的风险
肉类产品是人类饮食的重要组成部分,是营养的良好来源。食源性微生物是由于食用食物,尤其是动物起源产物而导致人类疾病的主要病原体。本研究的目的是验证胸腺氏胸腺精油对肺炎克雷伯氏菌的菌株的抗菌活性,铜绿假单胞菌和肉毒葡萄球菌与肉类产品分离出来的抗菌活性。为此,在微稀释板中进行了最小抑制浓度(MIC)和最小杀菌浓度(MBC)的分析。还使用磁盘扩散研究了产品与抗菌剂的关联。和抗粘附活性,在蔗糖存在下在玻璃管中确定。百里香油对K的抑制作用很强。肺炎,p。铜绿和s。saprophyticus,MIC值范围为64至512μg/ml,大多数菌株的杀菌作用范围为256至1,024μg/ml。t。寻常油与抗菌剂相关的相互作用各异,与协同(41.67%),冷漠(50%)和拮抗作用(8.33%)效应相关。关于抗粘附活性,测试产物可有效抑制所有正在研究的细菌菌株的依从性。因此,百里香油作为针对k的抗菌和抗依从剂的表现。肺炎,p。铜绿和s。saprophyticus是一种天然产品,可以代表对抗食源性疾病的有趣替代品。
课程概述教授:RéalRoy博士办公室:CUN 048A电子邮件:realoy@uvic.ca与我联系的最佳方法是在演讲室讲座之后。 讲座:w时间:14:30-17:20房间:CLE A127办公时间:星期二:10:00 -12:00 AM CUN 048课程描述。 微生物及其在当今和过去的人类社会中的作用。 在食物发酵(奶酪,酸面包)和饮料(葡萄酒,啤酒)的发酵中的微生物,以及食物出生和非食源性疾病(Listeriosis,Plague)。 微生物的生长,遗传学,进化和生态学方面是食物和疾病的一部分,重点是细菌及其分类。 微生物在贸易和历史上的重要性。 在本课程结束时学习结果:1。 您将能够解释微生物与人类之间的多种相互作用,例如正常的微生物,食物防腐剂和食物传播病原体。 2。 您将了解过去在各种食物中驯化的细菌和酵母菌,并在卑诗省,加拿大和世界上进行重要的经济活动。 3。 您将了解不列颠哥伦比亚省,加拿大和世界的食源性和水源性疾病的流行病学,以及卑诗省,加拿大和世界的机构如何建立安全系统,以防止或解决此类疾病爆发。 4。 您将建立批判性地阅读有关微生物食品和疾病的科学和人文主义文献的能力,以更好地了解细菌在人类社会中的作用。课程概述教授:RéalRoy博士办公室:CUN 048A电子邮件:realoy@uvic.ca与我联系的最佳方法是在演讲室讲座之后。讲座:w时间:14:30-17:20房间:CLE A127办公时间:星期二:10:00 -12:00 AM CUN 048课程描述。微生物及其在当今和过去的人类社会中的作用。在食物发酵(奶酪,酸面包)和饮料(葡萄酒,啤酒)的发酵中的微生物,以及食物出生和非食源性疾病(Listeriosis,Plague)。微生物的生长,遗传学,进化和生态学方面是食物和疾病的一部分,重点是细菌及其分类。微生物在贸易和历史上的重要性。在本课程结束时学习结果:1。您将能够解释微生物与人类之间的多种相互作用,例如正常的微生物,食物防腐剂和食物传播病原体。2。您将了解过去在各种食物中驯化的细菌和酵母菌,并在卑诗省,加拿大和世界上进行重要的经济活动。3。您将了解不列颠哥伦比亚省,加拿大和世界的食源性和水源性疾病的流行病学,以及卑诗省,加拿大和世界的机构如何建立安全系统,以防止或解决此类疾病爆发。4。您将建立批判性地阅读有关微生物食品和疾病的科学和人文主义文献的能力,以更好地了解细菌在人类社会中的作用。
食品安全计划包含工作人员用来安全准备食物的书面程序。该计划的好处是:•降低食源性疾病的风险•确保以一致的方式处理食物•协助员工培训•帮助减少建立中的食物浪费•允许员工和管理层控制和维护食品安全的基本食品安全计划使用“ HACCP”方法。HACCP代表“危害分析 - 临界控制点”。为了使食品安全计划有效,您还需要确保您遵循标准操作程序中的最佳实践。这些通常称为“先决条件程序”。
1。al-Zeyara,S.A.,B。Jarvis和B.M.Mackey。2011。天然菌群对食物的抑制作用对富集肉汤中李斯特氏菌生长的生长。int。J.食物微生物。145:98 115。2。Andrews,W.H.,H。Wang,A。Jacobson和T. Hammack,细菌分析手册,第5章。 沙门氏菌。 2017。 3。 Bailey,J.S。 和N.A. Cox。 1992。 普遍的普遍肉汤,用于同时检测食品中沙门氏菌和李斯特菌。 J. 食物蛋白质。 55:256-259。 4。 Baranyi,J。和T.A. 罗伯茨。 1994。 一种动态方法来预测食物中细菌的生长。 int。 J. 食物微生物。 23:277-294。 5。 Brehm-Stecher,B.,C。Young,L.A。Jaykus和M.L. tortorello。 2009。 样本准备:被遗忘的开始。 J. 食物蛋白质。 72:1774-1789。 6。 Chen,J。,J。Tang,J。Liu,Z。Cai和X.Bai。 2012。 多路复用PCR的开发和评估,用于同时检测五种食源性病原体。 J. Appl。 微生物。 112:823-830。 7。 Chen,J。,J。Tang,A.K。 Bhunia,C。Tang,C。Wang和S. Hui。 2015。 开发多种病原体富集肉汤,以同时生长五种常见的食源性病原体。Andrews,W.H.,H。Wang,A。Jacobson和T. Hammack,细菌分析手册,第5章。沙门氏菌。 2017。 3。 Bailey,J.S。 和N.A. Cox。 1992。 普遍的普遍肉汤,用于同时检测食品中沙门氏菌和李斯特菌。 J. 食物蛋白质。 55:256-259。 4。 Baranyi,J。和T.A. 罗伯茨。 1994。 一种动态方法来预测食物中细菌的生长。 int。 J. 食物微生物。 23:277-294。 5。 Brehm-Stecher,B.,C。Young,L.A。Jaykus和M.L. tortorello。 2009。 样本准备:被遗忘的开始。 J. 食物蛋白质。 72:1774-1789。 6。 Chen,J。,J。Tang,J。Liu,Z。Cai和X.Bai。 2012。 多路复用PCR的开发和评估,用于同时检测五种食源性病原体。 J. Appl。 微生物。 112:823-830。 7。 Chen,J。,J。Tang,A.K。 Bhunia,C。Tang,C。Wang和S. Hui。 2015。 开发多种病原体富集肉汤,以同时生长五种常见的食源性病原体。沙门氏菌。2017。3。Bailey,J.S。 和N.A. Cox。 1992。 普遍的普遍肉汤,用于同时检测食品中沙门氏菌和李斯特菌。 J. 食物蛋白质。 55:256-259。 4。 Baranyi,J。和T.A. 罗伯茨。 1994。 一种动态方法来预测食物中细菌的生长。 int。 J. 食物微生物。 23:277-294。 5。 Brehm-Stecher,B.,C。Young,L.A。Jaykus和M.L. tortorello。 2009。 样本准备:被遗忘的开始。 J. 食物蛋白质。 72:1774-1789。 6。 Chen,J。,J。Tang,J。Liu,Z。Cai和X.Bai。 2012。 多路复用PCR的开发和评估,用于同时检测五种食源性病原体。 J. Appl。 微生物。 112:823-830。 7。 Chen,J。,J。Tang,A.K。 Bhunia,C。Tang,C。Wang和S. Hui。 2015。 开发多种病原体富集肉汤,以同时生长五种常见的食源性病原体。Bailey,J.S。和N.A.Cox。 1992。 普遍的普遍肉汤,用于同时检测食品中沙门氏菌和李斯特菌。 J. 食物蛋白质。 55:256-259。 4。 Baranyi,J。和T.A. 罗伯茨。 1994。 一种动态方法来预测食物中细菌的生长。 int。 J. 食物微生物。 23:277-294。 5。 Brehm-Stecher,B.,C。Young,L.A。Jaykus和M.L. tortorello。 2009。 样本准备:被遗忘的开始。 J. 食物蛋白质。 72:1774-1789。 6。 Chen,J。,J。Tang,J。Liu,Z。Cai和X.Bai。 2012。 多路复用PCR的开发和评估,用于同时检测五种食源性病原体。 J. Appl。 微生物。 112:823-830。 7。 Chen,J。,J。Tang,A.K。 Bhunia,C。Tang,C。Wang和S. Hui。 2015。 开发多种病原体富集肉汤,以同时生长五种常见的食源性病原体。Cox。1992。普遍的普遍肉汤,用于同时检测食品中沙门氏菌和李斯特菌。J.食物蛋白质。55:256-259。 4。 Baranyi,J。和T.A. 罗伯茨。 1994。 一种动态方法来预测食物中细菌的生长。 int。 J. 食物微生物。 23:277-294。 5。 Brehm-Stecher,B.,C。Young,L.A。Jaykus和M.L. tortorello。 2009。 样本准备:被遗忘的开始。 J. 食物蛋白质。 72:1774-1789。 6。 Chen,J。,J。Tang,J。Liu,Z。Cai和X.Bai。 2012。 多路复用PCR的开发和评估,用于同时检测五种食源性病原体。 J. Appl。 微生物。 112:823-830。 7。 Chen,J。,J。Tang,A.K。 Bhunia,C。Tang,C。Wang和S. Hui。 2015。 开发多种病原体富集肉汤,以同时生长五种常见的食源性病原体。55:256-259。4。Baranyi,J。和T.A. 罗伯茨。 1994。 一种动态方法来预测食物中细菌的生长。 int。 J. 食物微生物。 23:277-294。 5。 Brehm-Stecher,B.,C。Young,L.A。Jaykus和M.L. tortorello。 2009。 样本准备:被遗忘的开始。 J. 食物蛋白质。 72:1774-1789。 6。 Chen,J。,J。Tang,J。Liu,Z。Cai和X.Bai。 2012。 多路复用PCR的开发和评估,用于同时检测五种食源性病原体。 J. Appl。 微生物。 112:823-830。 7。 Chen,J。,J。Tang,A.K。 Bhunia,C。Tang,C。Wang和S. Hui。 2015。 开发多种病原体富集肉汤,以同时生长五种常见的食源性病原体。Baranyi,J。和T.A.罗伯茨。1994。一种动态方法来预测食物中细菌的生长。int。J.食物微生物。23:277-294。 5。 Brehm-Stecher,B.,C。Young,L.A。Jaykus和M.L. tortorello。 2009。 样本准备:被遗忘的开始。 J. 食物蛋白质。 72:1774-1789。 6。 Chen,J。,J。Tang,J。Liu,Z。Cai和X.Bai。 2012。 多路复用PCR的开发和评估,用于同时检测五种食源性病原体。 J. Appl。 微生物。 112:823-830。 7。 Chen,J。,J。Tang,A.K。 Bhunia,C。Tang,C。Wang和S. Hui。 2015。 开发多种病原体富集肉汤,以同时生长五种常见的食源性病原体。23:277-294。5。Brehm-Stecher,B.,C。Young,L.A。Jaykus和M.L.tortorello。2009。样本准备:被遗忘的开始。J.食物蛋白质。72:1774-1789。6。Chen,J。,J。Tang,J。Liu,Z。Cai和X.Bai。 2012。 多路复用PCR的开发和评估,用于同时检测五种食源性病原体。 J. Appl。 微生物。 112:823-830。 7。 Chen,J。,J。Tang,A.K。 Bhunia,C。Tang,C。Wang和S. Hui。 2015。 开发多种病原体富集肉汤,以同时生长五种常见的食源性病原体。Chen,J。,J。Tang,J。Liu,Z。Cai和X.Bai。2012。多路复用PCR的开发和评估,用于同时检测五种食源性病原体。J. Appl。微生物。112:823-830。7。Chen,J。,J。Tang,A.K。 Bhunia,C。Tang,C。Wang和S. Hui。 2015。 开发多种病原体富集肉汤,以同时生长五种常见的食源性病原体。Chen,J。,J。Tang,A.K。Bhunia,C。Tang,C。Wang和S. Hui。2015。开发多种病原体富集肉汤,以同时生长五种常见的食源性病原体。J. Gen. Appl。 微生物。 61:224-231。 8。 Cheng,C.M。,K。Van,W。Lin和R.M. 红宝石。 2009。 实时PCR 24小时快速方法检测食品中沙门氏菌的实时验证。 J. 食物蛋白质。 72:945-951。 9。 Cheng,C.M.,W。Lin,K.T。 van,L。phan,n.n。 tran和D. Farmer。 2008。 使用实时PCR快速检测食品中沙门氏菌。 J. 食物蛋白质。 71:2436-2441。 10。 国内和进口产品分配2014财年DFP&G#14-05/14-06。 “在木瓜方法中检测沙门氏菌的样品制备” pg。 50。http://inside.fda.gov:9003/downloads/programsinitiatives/food/fieldprograms/ucm400671.pdf11。 Doran,T。Hanes,D.,Weagent,S.,Torosian,S.,Burr,D.,Yoshitomi,K.,Jinneman,K.,Penev,R.,Adeyemo,O.,Williams-Hill,D。和P. Morin。 2013。 蕨类植物念珠筛查方法。 Fern-Mic.0004.02。 12。 冯,P.,S.D。 Weagant和K. Jinneman,细菌学分析手册,第4A章。 腹泻大肠杆菌。 2017。 13。 Gasanov,U.,D。Hughes和P.M.汉斯布罗。 2005。 剖析和鉴定李斯特氏菌和单核细胞增生李斯特菌的方法:综述。 fems微生物。 修订版 29:851–875。 14。 Gehring,A.G.,D.M。 Albin,又名 Bhunia,H。Kim,S.A。Reed和S. Tu。J. Gen. Appl。微生物。61:224-231。8。Cheng,C.M。,K。Van,W。Lin和R.M. 红宝石。 2009。 实时PCR 24小时快速方法检测食品中沙门氏菌的实时验证。 J. 食物蛋白质。 72:945-951。 9。 Cheng,C.M.,W。Lin,K.T。 van,L。phan,n.n。 tran和D. Farmer。 2008。 使用实时PCR快速检测食品中沙门氏菌。 J. 食物蛋白质。 71:2436-2441。 10。 国内和进口产品分配2014财年DFP&G#14-05/14-06。 “在木瓜方法中检测沙门氏菌的样品制备” pg。 50。http://inside.fda.gov:9003/downloads/programsinitiatives/food/fieldprograms/ucm400671.pdf11。 Doran,T。Hanes,D.,Weagent,S.,Torosian,S.,Burr,D.,Yoshitomi,K.,Jinneman,K.,Penev,R.,Adeyemo,O.,Williams-Hill,D。和P. Morin。 2013。 蕨类植物念珠筛查方法。 Fern-Mic.0004.02。 12。 冯,P.,S.D。 Weagant和K. Jinneman,细菌学分析手册,第4A章。 腹泻大肠杆菌。 2017。 13。 Gasanov,U.,D。Hughes和P.M.汉斯布罗。 2005。 剖析和鉴定李斯特氏菌和单核细胞增生李斯特菌的方法:综述。 fems微生物。 修订版 29:851–875。 14。 Gehring,A.G.,D.M。 Albin,又名 Bhunia,H。Kim,S.A。Reed和S. Tu。Cheng,C.M。,K。Van,W。Lin和R.M.红宝石。2009。实时PCR 24小时快速方法检测食品中沙门氏菌的实时验证。J.食物蛋白质。72:945-951。9。Cheng,C.M.,W。Lin,K.T。 van,L。phan,n.n。 tran和D. Farmer。 2008。 使用实时PCR快速检测食品中沙门氏菌。 J. 食物蛋白质。 71:2436-2441。 10。 国内和进口产品分配2014财年DFP&G#14-05/14-06。 “在木瓜方法中检测沙门氏菌的样品制备” pg。 50。http://inside.fda.gov:9003/downloads/programsinitiatives/food/fieldprograms/ucm400671.pdf11。 Doran,T。Hanes,D.,Weagent,S.,Torosian,S.,Burr,D.,Yoshitomi,K.,Jinneman,K.,Penev,R.,Adeyemo,O.,Williams-Hill,D。和P. Morin。 2013。 蕨类植物念珠筛查方法。 Fern-Mic.0004.02。 12。 冯,P.,S.D。 Weagant和K. Jinneman,细菌学分析手册,第4A章。 腹泻大肠杆菌。 2017。 13。 Gasanov,U.,D。Hughes和P.M.汉斯布罗。 2005。 剖析和鉴定李斯特氏菌和单核细胞增生李斯特菌的方法:综述。 fems微生物。 修订版 29:851–875。 14。 Gehring,A.G.,D.M。 Albin,又名 Bhunia,H。Kim,S.A。Reed和S. Tu。Cheng,C.M.,W。Lin,K.T。van,L。phan,n.n。tran和D. Farmer。2008。使用实时PCR快速检测食品中沙门氏菌。J.食物蛋白质。71:2436-2441。10。国内和进口产品分配2014财年DFP&G#14-05/14-06。“在木瓜方法中检测沙门氏菌的样品制备” pg。50。http://inside.fda.gov:9003/downloads/programsinitiatives/food/fieldprograms/ucm400671.pdf11。Doran,T。Hanes,D.,Weagent,S.,Torosian,S.,Burr,D.,Yoshitomi,K.,Jinneman,K.,Penev,R.,Adeyemo,O.,Williams-Hill,D。和P. Morin。2013。蕨类植物念珠筛查方法。Fern-Mic.0004.02。12。冯,P.,S.D。Weagant和K. Jinneman,细菌学分析手册,第4A章。腹泻大肠杆菌。2017。13。Gasanov,U.,D。Hughes和P.M.汉斯布罗。 2005。 剖析和鉴定李斯特氏菌和单核细胞增生李斯特菌的方法:综述。 fems微生物。 修订版 29:851–875。 14。 Gehring,A.G.,D.M。 Albin,又名 Bhunia,H。Kim,S.A。Reed和S. Tu。Gasanov,U.,D。Hughes和P.M.汉斯布罗。2005。剖析和鉴定李斯特氏菌和单核细胞增生李斯特菌的方法:综述。fems微生物。修订版29:851–875。14。Gehring,A.G.,D.M。 Albin,又名 Bhunia,H。Kim,S.A。Reed和S. Tu。Gehring,A.G.,D.M。Albin,又名 Bhunia,H。Kim,S.A。Reed和S. Tu。Albin,又名Bhunia,H。Kim,S.A。Reed和S. Tu。Bhunia,H。Kim,S.A。Reed和S. Tu。2012。大肠杆菌O157:H7,单核细胞增生李斯特菌,肠道沙门氏菌和小肠结肠炎的混合培养物富集。食物控制。26:269-273。15。Hitchins,A.D。,K。Jinneman和Y. Chen,细菌学分析手册,第10章。单核细胞增生李斯特菌的检测和枚举。2017。16。Jasson,V.,A。Rajkovic,J。Debevere和M. Uyttendaele。 2009。 单核细胞增生李斯特菌的复苏和生长的动力学作为选择适当的富集条件作为快速检测方法的先前步骤的工具。 食物微生物。 26:88-93。 17。 Kanki,M.,K。Seto,J。Sakata,T。Harada和Y. Kumeda。 2009。 使用普遍的preenrichment肉汤在食物样品中同时富集了产生大肠杆菌O157和O26的大肠杆菌O157和O26和沙门氏菌的富集。 J. 食物蛋白质。 72:2065-2070。Jasson,V.,A。Rajkovic,J。Debevere和M. Uyttendaele。2009。单核细胞增生李斯特菌的复苏和生长的动力学作为选择适当的富集条件作为快速检测方法的先前步骤的工具。食物微生物。26:88-93。17。Kanki,M.,K。Seto,J。Sakata,T。Harada和Y. Kumeda。2009。使用普遍的preenrichment肉汤在食物样品中同时富集了产生大肠杆菌O157和O26的大肠杆菌O157和O26和沙门氏菌的富集。J.食物蛋白质。72:2065-2070。
电子邮件是与我联系的最喜欢的方法。您还必须在给我发电子邮件之前检查Umlearn公告和讨论板,因为您的问题的答案可能已经在此处解决。课程描述u课程日历的u描述粮食供应安全性的当代检查 - 在哪里,如何以及为什么出现问题,以及可以做些什么,可以始终如一地实现高质量,安全的食物。有争议的问题(残基,有机,生物技术,辐照)将以平衡的方式讨论,并为未来提供前景。一般课程描述本课程应该对任何吃饭的人都感兴趣。尽管高中对生物学和化学的知识将是有用的,但每一次尝试使没有这种背景的人都可以访问该课程。,即使加拿大的安全性食品供应非常安全,每年平均有400万加拿大人会出现食源性疾病。在本课程中,您将了解您的食品行业,媒体和政府在最大程度地减少食源性疾病的风险中的作用。准备进行一些计算,例如风险,暴露,ADI和DALY。还准备了解各种化学和生物学危害及其特征。这是第一年课程,而不是高级微生物学课程。如果您在学位课程的第三年或第四年参加了本课程,则可能会发现该课程的挑战性较小。课程目标本课程的广泛目标是使您能够了解食品安全评估原理。完成本课程后,您应该对各种危害的特征有理论知识,并且应该能够采取适当的预防措施以最大程度地降低其风险。课程学习目标该课程将向您介绍食品供应系统的潜在危害以及如何减轻这些危害。课程将使您能够:
如果生产者违反《自制食品自由法》,该怎么办?《自制食品自由法》中的任何内容均不得被解释为在据报道的食源性疾病的任何投资中阻碍卫生部。收到消费者投诉后,俄克拉荷马州农业,食品和林业部应有权要求完成食品安全培训的证明,验证生产者的总销售额,并确保生产商已遵守该法案的标签和交付要求。俄克拉荷马州农业,食品和林业系可能会罚款违反此法案的专业人士。违反《自制食品自由法》的行为应受到不超过300美元的罚款。
病原体传播途径,例如食源性疾病,通常涉及大肠杆菌污染的作物。食用这些原始农作物或未煮熟的农作物可能导致胃肠道感染。大肠杆菌还可以通过污染的土壤或径流进入饮用水,从而带来健康风险。被大肠杆菌污染的土壤构成了巨大的公共卫生威胁。为了减轻这些风险,采用自然方法消除病原体可以增强土壤健康并降低人类的致病性。农业中的适当卫生和卫生实践至关重要,包括安全的废物管理和仔细处理处理过的肥料。食品服务和农业环境中的个人必须在处理土壤或动物后彻底洗手。使用抗生素以及自然方法具有利弊。这项研究检查了抗生素的使用和静电剂的应用,这是一种有效且安全的病原体管理方法。我们的目的是利用生物学,物理和化学方法来促进土壤健康,了解静电剂的体外应用及其对肠道和土壤微生物组的影响。接线剂的研究研究了其使用电场来消除农业土壤和水系统中的致病微生物。这种方法是传统化学处理的一种替代方法,在使病原体失活的同时表现出有效性,同时保留了对土壤和肠道健康至关重要的整体微生物群落。静电剂在农业环境中显示出显着的潜力,以减少与污染作物有关的食源性疾病。这项工作与传统的抗菌方法进行了对比,与化学农药或抗生素相比,其环境和健康风险较低。其低生态足迹使盐水成为对化学处理的耐药性时代的吸引人的替代品。确保安全实施盐是至关重要的,这对于避免对支持健康生态系统和肠道功能的有益微生物产生负面影响。静电组织对土壤和水中病原体的有针对性行动为管理农业风险提供了有希望的策略,尤其是在乌干达等发展中的经济体中,农业对经济和粮食安全至关重要。减少土壤传播的病原体不仅可以确保更健康的农作物,而且还可以通过降低食源性疾病的风险来改善公共卫生。此外,诸如对抗抗微生物抗性的医疗应用中的潜在潜力为常规抗生素提供了一种替代方法,这些抗生素由于过度使用和滥用而变得越来越有效。这项研究强调了对各种病原体的体外有效性,强调了在土壤和肠道环境中维持健康微生物组的重要性。