肠道沙门氏菌和大肠杆菌是与人类和动物中食源性疾病有关的众所周知的细菌。为它们的进化,毒力因素和抗药性确定提供了宝贵的见解。这项研究旨在表征先前分离的沙门氏菌(n = 14)和e。大肠杆菌(n = 19),使用全基因组测序中的牛奶,肉及其相关的餐具。在加纳,大多数沙门氏菌血清射手(弗雷斯诺,普利茅斯,iftantis,fivantis,give和orle-ans)在加纳尚待报道。大多数沙门氏菌分离株都是泛敏感的,但是赋予fosfomycin的抗性的基因(Fosa7。2)和四环素(TET(a))分别在一个和三个分离株中检测到。七个沙门氏菌分离株带有INCI1-I(Gamma)质粒复制子。尽管在沙门氏菌菌株中抗菌抗性并不常见,但大多数(11/19)E。大肠杆菌菌株至少具有一个分辨率基因,近一半(8/19)具有多药耐药性和携带质粒。19 e中的三个。大肠杆菌菌株属于通常与肠道e e相关的血清。大肠杆菌(EAEC)病原体。虽然属于毒力相关谱系的菌株缺乏关键质粒编码的毒力质粒,但在大多数E中都检测到了几种质粒复制子。大肠杆菌(14/19)菌株。被这些病原体污染的食物可以作为疾病传播的工具,带来严重的公共卫生风险,并需要严格的食品安全和卫生习惯,以防止爆发。因此,需要进行持续的监视和预防措施,以阻止食源性病原体的传播并降低加纳相关疾病的风险。
(1)第 2003/99/EC 号指令第 8(2) 条要求各成员国主管部门根据欧洲议会和理事会第 2119/98/EC 号决定 ( 2 ),与负责处理严重跨境人类健康威胁及其后果的主管部门合作,对食源性疾病疫情进行调查。该决定已被欧洲议会和理事会第 1082/2013/EU 号决定 ( 3 ) 废除,后者后来被欧洲议会和理事会第 2022/2371 号条例 (EU) 废除和取代 ( 4 )。这些调查应提供有关流行病学概况、可能涉及的食品、疫情潜在原因的数据,并包括充分的流行病学和微生物学研究。
我们如何储存有潜在危险的食品?为了适合人类食用,所有食品必须保持无掺假、无腐败、无污物或其他污染。有潜在危险的食品尤其令人担忧,因为它们为微生物的生长提供了适宜的条件。这些食品必须保持热或冷,以防止微生物生长。热是指 140°F 或以上,冷是指 41°F 或以下。41°F 和 140°F 之间的温度范围称为温度危险区。在这个范围内,微生物很舒适,会快速生长。41°F 及以下的温度足以抑制或减缓微生物的生长,而 140°F 以上时,大多数导致食源性疾病的微生物开始死亡。
众所周知,牛奶的热处理(例如巴氏灭菌)可以在食源性疾病方面安全食用,而在充足的热处理中的失败导致了产品召回和粮食生存疾病的暴发。在乳制品行业中影响相关微生物的不同热处理,重点是细菌。这些包括对D-和Z值的描述作为耐热性的度量,影响D值的因素,例如不同的乳制品矩阵,讨论与乳制品对细菌的耐热性相关的某些机制,对乳制品的不同类型的暖气效应对乳制品和适当的供热效果的不同类型的供热效果,以及对最多的供应效果,以及对适当的实验效果。©2021 Elsevier Ltd.保留所有权利。
FDA关于某些食品(食品可追溯性最终规则)的其他可追溯性记录要求的最终规则,建立了可追溯性记录记录保存要求,除了现有法规外,对于在食品可食用性清单(FTL)中制造,加工,包装或持有食品的人(FTL)。最终规则是FDA智能食品安全蓝图新时代的关键组成部分,并实施了《 FDA食品安全现代化法》(FSMA)的第204(d)节。最终规则中确定的新要求将允许更快地识别和快速清除潜在的受污染的食物,从而减少食源性疾病和/或死亡。来源:fda.gov
食源性疾病对全世界的公共卫生构成了重大威胁,食品的微生物质量在防止此类暴发方面起着关键作用。环境因素直接影响食物中存在的微生物的生长,生存和行为。本文旨在探讨环境条件对食品微生物质量的影响以及对食品安全的影响。温度是影响微生物生长的最关键环境因素之一。制冷和环境温度都会影响微生物增殖的速度。储存,运输和食物处理过程中温度控制不当会导致微生物生长,变质和病原体增殖。本节研究了温度对微生物生长的影响以及温度控制在维持食品的微生物学质量方面的重要性[2]。
食源性疾病和致病性微生物:某些细菌和病毒是造成粮食源性疾病的原因,这可能会引起重大的健康风险。病原体,例如沙门氏菌,大肠杆菌(大肠杆菌),李斯特菌和弯曲杆菌,会引起严重的感染和爆发。 这些有害的微生物会在生产的各个阶段污染食物,导致疾病,在某些情况下死亡。 控制这些病原体需要严格的卫生,适当的食物处理和严格的测试。病原体,例如沙门氏菌,大肠杆菌(大肠杆菌),李斯特菌和弯曲杆菌,会引起严重的感染和爆发。这些有害的微生物会在生产的各个阶段污染食物,导致疾病,在某些情况下死亡。控制这些病原体需要严格的卫生,适当的食物处理和严格的测试。
获取安全且有营养的食物对于维持生命和保持身体健康至关重要。食用被病原体污染的食物会导致从腹泻到癌症等严重疾病。许多食源性感染可导致长期损伤甚至死亡。因此,及早发现食源性病原体(如致病性大肠杆菌菌株)对于公共安全至关重要。检测这些细菌的传统方法基于在选择性培养基上培养并遵循标准生化鉴定。尽管这些方法准确无误,但却非常耗时。基于 PCR 的病原体检测依赖于先进的设备和专业技术人员,而在资源有限的地区很难找到这些设备和技术人员。而 CRISPR 技术对于识别致病细菌更具特异性和灵敏度,因为它采用可编程的 CRISPR-Cas 系统,可针对特定的 DNA 序列,最大限度地减少非特异性结合和交叉反应。在本项目中,开发了一种基于 CRISPR-Cas12a 传感的稳健检测方法,该方法可快速、灵敏且特异性地检测从田纳西州 17 个农场的成年山羊粪便样本中收集的致病性大肠杆菌分离株。检测反应包含致病区域、报告探针、Cas12a 酶和三种致病基因(stx1、stx2 和 hlyA)特有的 crRNA 的扩增 PCR 产物。与致病细菌的 CRISPR 反应在紫外光激发下发出荧光。为了评估该检测的检测灵敏度和特异性,将其结果与基于 PCR 的检测检测进行了比较。两种方法对相同样本的结果相似。该技术非常精确、高度灵敏、快速、经济高效且易于使用,并且可以轻松克服现有检测方法的局限性。该项目可以产生一种多功能的检测方法,该方法易于适应快速响应,以检测和监测对人类健康以及动植物生产造成大规模生物安全威胁的疾病。
家禽是世界上第二大食用的肉。在非洲,鸡肉生产和加工都是正式和非正式的,小农构成了该行业的多数。非正式实践很容易受到鸡的生产和加工的影响,鸡肉很容易被诸如大肠杆菌,金黄色葡萄球菌,沙门氏菌和弯曲杆菌等病原体污染。非洲家禽业的增长,再加上密集的生产,导致抗生素的不加区分使用和抗菌耐药性的发展,对消费者的健康构成了风险。但是,有限的研究评估了非洲消耗的鸡肉的质量和安全性。几项研究报告说,鸡是与食源性疾病有关的病原体的主要工具,这表明食源性疾病对人类健康构成威胁。建议生产者和处理器的充分卫生和安全实践作为主要干预措施。这些实践需要进行实验室分析和检查,以评估鸡质量,并迅速改变行为,态度和习惯,以减少污染并促进抗菌剂的合理使用。本评论概述了非洲加工鸡的质量和微生物安全性。它深入研究了有关家禽部门的细节,涵盖了鸡肉的生产,屠宰和加工。关键词:家禽生产,微生物质量,抗菌耐药性,抗生素残留物。评论突出了家禽污染的来源和机制,描述了通过食用家禽传播传播的疾病,介绍了有关鸡肉的质量和微生物安全性的数据,提出了鸡肉生产和加工中的良好实践,讨论了抗菌抗药性和抗生素的抗生素和抗生素的抗生素和抗生素的产生,并讨论了抗生素的抗生素和抗生素的产生。食物。引言家禽生产是世界上第二个领先的动物生产部门,拥有超过80.86亿吨(MT),非洲几乎没有生产
当前的社会包括越来越容易感染的人。对于某些具有严重免疫缺陷的人来说,正在开处方中性或低微生物饮食,这取代了更可能含有具有较低风险替代品的人(机会主义)病原体的高风险食品。这些中性粒细胞减少饮食指南通常是从临床和营养的角度建立的,而不是从食品加工和食品保存的角度来看。在这项研究中,基因特大学医院使用的当前使用指南是根据食品加工和保存技术的当前知识以及有关处理食品的微生物质量,安全性和卫生的科学证据进行了评估的。三个标准被确定为重要:(1)微生物污染水平和组成; (2)已建立的食源性病原体(如沙门氏菌属)的潜在存在。(建议零容忍政策); (3)对单核细胞增生李斯特氏菌作为机会性的食源性病原体的警惕性提高,免疫受损个体死亡率很高(应适用零容忍政策)。这三个标准的组合被用作评估食品适合性的框架,包括在低微生物饮食中。对法兰德斯零售市场的(最少加工的)基于植物的食品的选择有限的筛查,比利时支持将这些食物类型纳入低菌粒饮食中的决策。处理技术的差异,产品的初始污染等,导致微生物污染的高度可变性,使得在制造和后续储存条件期间应用的成分以及处理和保存技术的事先了解,因此很难明确地接受或拒绝某种类型的食品。仍然,当确定食品的适用性要包含在低微生物饮食中时,不仅应评估微生物状态,而且还应评估营养和感官特性,这需要多学科的交流和协作。