简介 威尔逊病 (WD) 是一种罕见的常染色体隐性铜代谢障碍,由 ATP7B 基因的致病变异引起,该基因编码 P 型铜转运 ATPase,主要在肝细胞中表达。ATP7B 在铜代谢中起着关键作用,为铜蛋白合成提供铜,并将过量的铜释放到胆汁中。ATP7B 功能丧失会导致肝脏中出现有毒的铜沉积,在较小程度上还会在脑、眼和肾脏中出现,从而导致慢性肝炎和肝硬化直至肝功能衰竭,以及精神和神经功能障碍。目前对 WD 的治疗方法是通过螯合剂去除铜沉积物和通过锌盐减少肠道对铜的吸收 (1)。这种疗法并非对所有 WD 患者都有效,对治疗无反应的患者通常需要肝移植 (2)。此外,治疗依从性往往是一个问题,尤其是在青少年中 (3, 4)。腺相关病毒 (AAV) 载体被认为是肝脏定向基因治疗的首选载体,并正在迅速进入临床 (5)。使用 AAV 载体的经典基因置换方法已在成年 Atp7b –/– 小鼠中实现了疾病纠正 (6)。然而,WD 可能在年轻个体中表现出来,在生长的肝脏中早期施用游离型 AAV 载体可能会导致由于肝细胞增殖而逐渐丧失转基因表达。此外,大多数 WD 患者在诊断时已经出现肝损伤 (7),再生反应可能会进一步促进转基因稀释。相反,基因组编辑会导致永久性的基因组 DNA 修饰,如果发生增殖,子细胞会继承这些修饰,从而避免转基因稀释。AAV 介导的白蛋白 (Alb) 基因座内无启动子转基因的靶向整合已被开发为一种安全有效的肝脏定向基因组编辑方法 (8)。该策略利用
摘要 目的 华蟾素是一种从蟾蜍皮腺干燥中提取的中药,自 20 世纪 70 年代以来在中国用于治疗肝癌。经肝动脉化疗栓塞 (TACE) 是无法切除的肝细胞癌 (HCC) 患者的标准治疗方法。本研究评估了 TACE 和华蟾素联合治疗无法切除的 HCC 的疗效和安全性。方法 从 2012 年 9 月至 2016 年 9 月,前瞻性纳入 120 例确诊为无法切除的 HCC 患者。患者按 1:1 的比例随机分为联合治疗组(华蟾素-TACE)和 TACE 治疗组。主要终点是无进展生存期 (PFS),次要终点是总生存期 (OS) 和安全性。比较基线和 3 个月随访时的探索结果血清 Na + /K + -ATPase (NKA) α 3 的预后作用。所有患者均进行了36个月的随访。结果 共112例完成研究的患者纳入分析。华蟾素-TACE组的PFS和OS明显优于TACE组(分别为p=0.029和p=0.025),中位PFS分别为6.8和5.3;中位OS分别为14.8个月和10.7个月。虽然基线NKA低组与NKA高组患者的OS之间无预后意义(p=0.48),但3个月随访后的变化显示出显著的预后价值,其中分别为8.5个月和23.8个月(p<0.001)。两组治疗相关不良事件相当。结论 华蟾素-TACE可有效延长不可切除的HCC患者的PFS和OS。
(PG标准)代码:461单元I:细胞和分子生物学:STR分析,其他构型分析,生物反应器尺度上升,生物过程的建模和模拟,酶系统中的生物反应器考虑。细胞,细胞系,细胞培养,细胞细胞器及其功能,细胞分裂的类型,细胞周期及其调节机制。传输机制(被动,主动,ATPase泵和Na+/K+泵),受体,信号转导,信号扩增的二次信使的模型,核酸的结构,原核生物中的复制,转录,翻译,翻译和DNA修复机制。启动子,增强子和转录因子。遗传代码和LAC和TRP操纵子。生物化学和微生物学:碳水化合物,脂质,核酸和蛋白质的结构,功能和代谢。酶及其机制。电子传输链系统,高能化合物和还原等效物。微生物学的历史,微生物的分类,结构组织和微生物的繁殖。微生物,一级和继发代谢产物及其应用的物理和化学控制。基因工程:基因,控制基因表达,限制酶,载体(原核和真核)DNA和基因组文库的构建。食品化学和营养:碳水化合物,蛋白质和脂质及其功能性能,颜料,食物风味,酶活性,酶促和非酶褐变。营养:均衡饮食,必需氨基酸和必需脂肪酸,水溶性和脂溶性维生素,矿物质在营养中的作用,共同因素,抗营养素,营养素,食品,食物,食物中的水分,食物,化学和生物化学变化,在处理和储存过程中。食品添加剂,JECFA在食品添加剂安全评估中的作用,定义,化学结构,食品加工中的作用和产品最终特征,营养障碍,
某些病毒(如带尾噬菌体和单纯疱疹病毒)通过强大的环状分子马达将双链 DNA 包装到空的衣壳中。噬菌体 Φ 29 的 DNA 包装马达的高分辨率结构和力测量表明,其五个 ATPase 亚基相互协调 ATP 水解,以维持环上 DNA 易位步骤的正确循环序列。在这里,我们探索 Φ 29 马达如何通过跨亚基相互作用定时关键事件(即 ATP 结合/水解和 DNA 抓取)来调节易位。我们使用与 DNA 结合的亚基二聚体作为我们的模型系统,这是一个最小系统,仍然可以捕捉完整五线运动复合体的构象和跨亚基相互作用。全 ATP 和混合 ATP-ADP 二聚体的分子动力学模拟表明,一个亚基的核苷酸占有率通过改变其催化谷氨酸接近 ATP 的伽马磷酸盐的自由能景观,强烈影响其水解相邻亚基中 ATP 的能力。具体而言,一个 ATP 结合亚基会提供反式残基,从而在空间上阻断相邻亚基的催化谷氨酸。当第一个亚基水解 ATP 并与 ADP 结合时,这种空间障碍就会得到解决。这种阻碍机制得到了功能性诱变的支持,并且似乎在几个 Φ 29 亲属中是保守的。对我们的模拟进行相互信息分析,揭示了通过反式阻断残基的亚基间信号通路,这些通路允许相邻亚基的结合口袋之间进行感知和通信。这项工作表明,通过新的反式亚基相互作用和通路,亚基之间的 DNA 易位事件的顺序得以保留。
引言威尔逊疾病(WD)是由ATP7B基因中的致病变异引起的一种罕见的常染色体隐性代谢疾病,它编码了P型铜转运ATPase,并且主要在HEPATOCYTES中表达。ATP7B在铜代谢中起着至关重要的作用,为铜蛋白合成提供了铜,并将过量的铜释放到胆汁中。ATP7B功能的丧失会导致肝脏中的有毒铜沉积物,并且在较小程度上,在大脑,眼睛和肾脏中导致慢性肝炎和肝硬化,直到肝脏衰竭,并导致精神病和神经系统缺陷。当前的WD疗法基于螯合剂的去除和减少锌盐铜肠吸收的铜沉积物(1)。治疗在所有WD患者中均不有效,无反应者通常需要肝移植(2)。此外,遵守治疗通常是一个问题,尤其是在青少年中(3,4)。腺相关病毒(AAV)载体被认为是肝脏定向基因治疗的首选载体,并且正在迅速进入诊所(5)。使用AAV载体的经典基因替代方法已在成年ATP7B - / - 小鼠(6)中实现了疾病校正。然而,WD可以在年轻人中表现出来,而在生长肝脏中早期施用了伴有肝AAV载体可能会导致由于肝细胞增殖而导致转基因表达的逐渐丧失。此外,大多数WD患者在诊断时已经存在肝损伤(7),再生反应可能会进一步促进转基因稀释。此策略利用相反,基因组编辑会导致永久性基因组DNA修饰,如果发生增殖,则由子细胞遗传,从而避免转基因稀释。AAV介导的无启动子转基因在白蛋白(ALB)基因座中的靶向整合已被开发为一种安全有效的肝脏定向基因组编辑方法(8)。
抽象的简介和目标。已经报道了对草药(HM)进行中风治疗的许多临床前评估。目前的综述的目的是突出中风的病理生理,并回顾临时鉴定的HM治疗的分子机制。在Google Scholar上只能使用32篇文章,描述了中风动物模型以及人类临床试验的HM的治疗和机理过程,并在这项研究结果和讨论中进行了审查。subiptimal Na+/K+ ATPase泵的活性,小胶质细胞因子的作用增加了水平的细胞内粘附分子-1(ICAM-1),从而促进WBC渗出与基质金属蛋白酶(MMP)的相关性增加(MMP)活性的增加(Digest Basement-Membranes),解释说,Edema和Apoptimations/Appoptiss/Inflomm/Inflomm/Inflomptions。在受伤的神经元中的电导率改变,谷氨酸释放的补偿性增加,这淹没了调节性神经胶质谷氨酸转运蛋白1,从而使谷氨酸水平达到兴奋性毒素的伸向峰值,从而促进神经元死亡。NMDAR上的谷氨酸活性促进了导致凋亡的Ca2+的氧化应激,脂质过氧化和释放/流入。HM参与中风治疗的分子靶标可促进抗凋亡/抗炎症,抗氧化,血管生成,神经发生,抗凝/纤维蛋白溶解作用和最佳代谢。不同的HM促进了纤溶酶原活化剂,亚素氧酶1,中子1,脑衍生的神经性因子(BDNF)和有丝分裂原激活的蛋白激酶(MAPK)的活性。中风的病理生理学和HM对其进行改善的临床前靶标被鉴定出来,这可以作为研究有效治疗中风的有效治疗的重点。
抽象的大肠杆菌DNA速酶催化封闭的双链DNA的否定性超涂层,以ATP为代价。酶的酶的另外活性阐明了超涂层反应的能量偶联成分是ATP至ADP和ADP和PI的DNA依赖性水解,以及ATP通过gyrase裂解反应的DNA位点特异性的ATP改变。这两种DNA链的这种裂解是由稳定的Gy- Rase-DNA复合物的十二烷基硫酸钠处理的,该配合物被抑制剂氧甲酸捕获。ATP或不可水解的类似物,腺基-5'-二氨基磷酸酯(APP [NHLP),都会在Colel DNA上移动主要的裂解位点。这种切割重排的Novobiocin和Coumermycin al的预防将抗生素的作用位点放置在ATP水解之前的一个反应步骤中。步骤阻塞是ATP的结合,因为香豆素和Novobiocin在ATPase和SuperCoiling分析中与ATP竞争相互作用。 K;对于ATP而言,值比KM少四个数量级以上。这种简单的机制解释了药物对DNA回旋酶的所有影响。使用APP [NHP [NHP的另一种有效的反应竞争抑制剂催化YGYRASE的竞争抑制剂,表明将DNA驱动到更高的能量超胶结形式不需要高能键的裂解。 与Gyrase,App的底物水平(NHLP诱导与酶量成正比的超串联; a -0.3超螺旋转弯是根据Gyrase Frotomer A引入的。 我们假设ATP和APP [NH] P是回旋酶的构象变化的变构效应器,导致一轮超涂层。使用APP [NHP [NHP的另一种有效的反应竞争抑制剂催化YGYRASE的竞争抑制剂,表明将DNA驱动到更高的能量超胶结形式不需要高能键的裂解。与Gyrase,App的底物水平(NHLP诱导与酶量成正比的超串联; a -0.3超螺旋转弯是根据Gyrase Frotomer A引入的。我们假设ATP和APP [NH] P是回旋酶的构象变化的变构效应器,导致一轮超涂层。通过ATP水解的核苷酸解离,将回旋酶返回其原始构型,从而允许酶转移。伴随核苷酸亲和力改变的这种环状构象变化似乎也是其他多种操作中能量转导的共同特征,包括肌肉收缩,蛋白质合成和氧化磷酸化。
B2 与申请有关的转基因生物的一般描述 GMO 的描述 GMO 是野生型副伤寒沙门氏菌 (S. Paratyphi) A 9150 菌株的同源突变体。遗传改造的目的是构建一种带有 guaBA 操纵子和 clpX 基因缺失的改良 S. Paratyphi A 9150 菌株,以产生生长缺陷的减毒 S. Paratyphi A 菌株 (CVD 1902)。GMO (CVD 1902) 将用于研究其作为减毒活口服疫苗在受控人类感染模型中预防肠热病的价值。CVD 1902 副伤寒沙门氏菌 A 血清型活口服疫苗是由野生型亲本菌株 S. Paratyphi A 9150 构建的。使用改良的 Lambda Red 介导的定点诱变程序进行缺失。删除了两个基因序列:guaBA 染色体操纵子(编码远端从头鸟嘌呤核苷酸生物合成途径中使用的两种酶)和 clpX 基因(编码分子伴侣 ATPase,与 clpP 编码的丝氨酸蛋白酶一起发挥作用,形成参与各种代谢过程的复合物)。clpX 缺失突变的表型后果之一是鞭毛的过度表达,这也可能增强 GMO 菌株的免疫原性,因此有助于其作为减毒活疫苗的适用性。从研究中获得的信息将用于指导疫苗设计和开发,从而可能影响公共卫生干预策略。应用描述在这项临床研究中,我们建议调查 GMO CVD 1902 作为减毒活疫苗在 S. Paratyphi A 人类攻击模型中预防副伤寒感染的有效性。使用野生型 S 的 S. Paratyphi A 感染的人感染模型。副伤寒甲型(NVGH308 株)已在牛津疫苗组(英国牛津大学)建立。牛津疫苗组(英国牛津大学)一直在进行
课程目标:细胞生物学课程提供了对细胞细胞器和组件的结构和功能的基本理解,以及细胞与其微环境单元I-I:细胞结构和功能的功能相互作用:细胞大小和形状的多样性;细胞理论;原核细胞和真核细胞的结构;细胞细胞器及其组织,细胞内室内化 - 肾上腺素 - 类型和功能,过氧化物酶体,内体和溶酶体的结构和功能,线粒体的结构功能和叶绿体;细胞外基质,微生物中细胞壁的结构和功能。UNIT-II: PLASMA MEMBRANE STRUCTURE AND FUNCTION: Chemical composition and molecular arrangement (lipid bilayer, membrane proteins and carbohydrates), models of membranes (fluid mosaic)., Membrane Transport: Active and passive transport of ions, Na+/K+ pump, ATPase pumps, Co-transport, Symport, Antiport, Endo cytosis and Exocytosis.单位-III:细胞相互作用和细胞骨架:细胞粘附分子:钙粘蛋白,类似于分子的免疫球蛋白,整联蛋白和Selectins。细胞连接:紧密连接,脱骨体,半底体和间隙连接。微管,微丝及其动力学。Centrosome,Cilia,Flagella。有丝分裂仪和染色体的运动。单位IV:细胞周期和检查点和癌症:细胞周期 - 细胞周期,相间,有丝分裂,减数分裂和细胞因子的细胞周期控制和检查点的各个阶段,细胞周期中断;癌症;类型和阶段。肿瘤抑制基因和原子基因。癌症的分子基础。wnt,jak-stat途径。单位V:细胞信号传导,凋亡和坏死:概述,胞质,核和膜结合受体,次级使者的概念,CAMP,CGMP,CGMP,蛋白质激酶,G蛋白,信号传输机制。衰老,坏死分类,坏死的形态模式,坏死原因,凋亡 - 程序性细胞死亡;凋亡的机制;由内部信号触发的凋亡;由外部信号触发的凋亡;凋亡诱导因子;癌症细胞凋亡的凋亡 - 程序性细胞死亡;凋亡的机制;由内部信号触发的凋亡;由外部信号触发的凋亡;凋亡诱导因子;癌症的凋亡。
引言结核病 (TB) 仍然是一项严重的健康挑战,仅在 2021 年全球就造成约 150 万人死亡 (1)。结核分枝杆菌 (M . tuberculosis) 具有极强的人类适应性,通过尚不完全了解的免疫破坏机制在巨噬细胞内存活。肺巨噬细胞最初吞噬结核分枝杆菌会激活由种系编码的模式识别受体 (PRR) 组成的胞浆监视途径,导致 I 型干扰素 (IFN) 和促炎细胞因子产生增加、炎症小体活化和自噬 (2–4)。我们实验室和其他实验室的研究表明,结核分枝杆菌 DNA 和分枝杆菌衍生的环状二核苷酸可激活胞浆 DNA 传感途径 (5–8),从而驱动 I 型 IFN 的表达。虽然已经广泛研究了细胞浆病毒 RNA 在先天免疫感应中的作用,但细菌 RNA 对疾病发病机制的贡献尚不明确 (9)。最典型的 RIG-I 样受体 (RLR) 家族成员 RIG-I 和黑色素瘤分化因子 5 (MDA5) 包含一个中央 ATPase 含 DExD/H-box 解旋酶结构域和一个 C 末端阻遏物结构域,这两个结构域均参与 RNA 结合 (10, 11)。通过 RNA 结合激活后,2 个串联 caspase 激活和募集结构域 (CARD) 与衔接子线粒体抗病毒信号蛋白 (MAVS) 相互作用,介导 NF- κ B 和 IFN 调节因子 (IRF) 的诱导以及随后 IFN 刺激基因 (ISG) 的表达 (12–14)。尽管结构相似,RLR 检测的 RNA 种类往往不同,这些 RNA 种类往往具有病原体特异性,但不一定相互排斥 (11, 15)。越来越多的证据表明,RIG-I 在结核分枝杆菌感染的 I 型干扰素反应中起着非冗余作用 (16–18),它通过与特定的结核分枝杆菌 RNA 转录本结合,这些转录本利用分枝杆菌 ESX-1 分泌系统进入巨噬细胞胞质 (16)。我们最近发现,结核分枝杆菌 RNA 转录本能够通过与特定结核分枝杆菌 RNA 转录本结合,从而进入巨噬细胞胞质。