摘要:我们强调了 M5 膜 sigma 模型中场内容的全局完成的必要性,类似于狄拉克的电荷/通量量化,并指出世界体积及其周围超重力背景下的超空间 Bianchi 恒等式将 M5 的通量量化定律限制为非阿贝尔上同调理论,合理等同于扭曲形式的同伦。为了清楚地阐明这一微妙之处,我们通过 M5“超嵌入”对世界体积 3 通量进行了简化的重新推导。最后,假设通量量化定律实际上是同伦的(“假设 H”),我们展示了这如何意味着在一般 M5 世界体积上存在 Skyrmion 类孤子,以及在异质 M 理论中“开放 M5 膜”边界上存在(阿贝尔)任意子孤子。
在对有限代数的集合进行分类时(例如,在有限半纤维的计算分类中)时,一个重要的任务是确定诸如右,中和左核,核,核,核和中心之类的子结构。当没有有关代数属性的其他信息时,找到这些结构可能会变得昂贵。在本文中,我们引入了量子算法,而不是通过将其作为隐藏子组问题(HSP)的实例来解决此任务的效果。我们给出了该过程中涉及的量子电路的详细构造,并证明我们算法的总体(量子)复杂性在代数的维度上是多个多数的,而与经典计算机的类似方法则需要指数级的查询数量。
,我们在超导电路中提出了一个循环函数的方案,该电路由三个约瑟夫森交界环和三个函数组成。在这项研究中,我们通过从基本边界条件中得出有效潜力来获得系统的精确拉格朗日。随后我们表明,我们可以选择性地选择在执行循环器函数的三个连接的分支的电流方向。此外,我们将此循环函数用于Majorana零模式(MZM)的非Abelian编织。在系统的分支中,我们引入了一对MZM,这些MZM通过三个阶段相互相互作用。循环器函数确定了三个函数的相位,从而确定MZM之间的耦合以产生编织操作。我们修改了系统,以便将MZMS耦合到外部系统以在可扩展设计中执行量子操作。
非亚伯式拓扑顺序是易于断层量子计算的最有希望的平台之一[1]。这些阶段中的激发是非亚伯式的,它们是具有非亚伯交换统计的准粒子[2]。非亚伯里亚人提供了拓扑堕落的来源,可以非本地的信息存储。然后可以通过编织Anyons来操纵信息,这一过程由于其拓扑性质而反对局部扰动的反应[3-7]。在实现非亚洲拓扑秩序的最有希望的系统中,是强磁场中的2 d电子气体,它们可以形成分数量子霍尔(FQH)状态。令人兴奋的是,在FQH状态[8]中,有越来越多的实验证据,以及以填充分数为ν= 5 /2的非亚伯FQH状态,支持最简单的非亚伯利亚人,Ising,Anyon [9-13]。Ising Anyons对通用量子计算不足[1]。相比之下,拓扑命令支持所谓的斐波那契,可以用作通用量子计算机[14]。这是从fibonacci anyon的融合规则τ×τ= 1 +τ的角度来看,其中τ是fibonacci anyon,1是微不足道的anyon,×表示任何融合。因此,对观察到的ν= 12/5 fqh状态引起了极大的兴趣,因为数字表明这可能对z 3 read-rezayi(RR)状态[15] [15],该状态支持斐波那契任何人,除其他] Abelian [16,17]。[7]对于猜测ν= 5 /2状态。这些包括斐波那契的成核不幸的是,其他人的存在可以通过进入编织过程来弥补斐波那契人的操纵,因此在参考文献中讨论的在干涉实验中对非亚伯利亚人的识别感到沮丧。因此,了解是否有可能实现支持斐波那契的拓扑顺序,以作为其唯一的激发。已经提出了一些建议,以实现这种斐波那契状态。
我们针对 Z nmk 中的隐子群问题提出了一个多项式时间精确量子算法。该算法使用模 m 的量子傅里叶变换,不需要对 m 进行因式分解。对于光滑的 m ,即当 m 的素因数为 (log m ) O (1) 时,可以使用 Cleve 和 Coppersmith 独立发现的方法精确计算量子傅里叶变换,而对于一般的 m ,可以使用 Mosca 和 Zalka 的算法。即使对于 m = 3 和 k = 1,我们的结果似乎也是新的。我们还提出了计算阿贝尔群和可解群结构的应用程序,它们的阶具有与 m 相同(但可能是未知的)素因数。可解群的应用还依赖于 Watrous 提出的用于计算子群元素均匀叠加的技术的精确版本。
我们利用局部性的见解来约束一类广泛的隐形传态协议。在我们考虑的“标准”隐形传态协议中,所有结果相关的幺正态都是以测量结果的线性函数为条件的泡利算子。我们发现所有这类协议都涉及准备一个“资源状态”,该状态表现出对称保护拓扑 (SPT) 序,具有阿贝尔保护对称 G k = ( Z 2 × Z 2 ) k 。通过测量本体中相应的 2 k 个弦序参数并应用结果相关的泡利算子,将 k 个逻辑状态在链的边缘之间隐形传态。因此,这一类非平凡的 SPT 状态对于 k 个量子比特的标准隐形传态既是必要的,也是充分的。我们用几个例子说明了这个结果,包括簇状态、其变体和非稳定器超图状态。
在 [7] 中,作者提出了两种数字签名方案,他们声称这些方案是量子安全的,即可抵抗量子算法的攻击。这里我们表明,事实上,存在一个多项式时间量子算法(用于解决隐藏子群问题),允许人们在任一方案中伪造数字签名。请注意,[2] 中提供了一种用于解决任何阿贝尔(=交换)群中隐藏子群问题的多项式时间量子算法(另见 [12])。此外,我们确定所提出的方案通常甚至容易受到不使用量子算法的攻击。包括 [5] 和 [6] 在内的几个其他类似的数字签名方案也可以使用相同的方法进行攻击。我们还注意到,在 [8] 中,作者提出了一种基于类似思想的公钥建立协议。该协议在 [3] 中受到了一种与我们完全不同的方法的攻击。
组:群体,正常亚组,商组,同构定理,Cayley定理的同态。广义的Cayley定理,Cauchy的定理,小组动作,Sylow定理及其应用。正常和亚正常序列,组成序列,可解决的组和尼尔植物组,Jordan-Holder定理及其应用。戒指:理想和同构,素数和最大理想,商领域和整体域,多项式和功率系列环。划分理论:欧几里得领域,主要理想领域,独特的分解域,高斯定理。Noetherian和Artinian戒指,希尔伯特基础定理,Chhen的定理。模块:具有身份,循环模块,自由模块,基本结构定理的左右模块,用于有限生成的模块,并应用于有限生成的阿贝尔组。参考:
任意子是二维系统中的激发态,既不是玻色子也不是费米子 [2]。阿贝尔任意子在交换时会收集任意复相因子。两个非阿贝尔任意子的交换可以用作用于描述复合任意子系统的希尔伯特空间的辫子群 [3] 的矩阵表示来描述。后一种类型尤其令人感兴趣,因为它的任意子可用于通过在拓扑量子计算方案中将它们编织起来来处理信息 [4, 5]。任意子出现在具有拓扑序的物质相中,例如分数量子霍尔 (FQH) 态、基塔耶夫蜂窝晶格模型 (KHLM)、量子双模型 [4, 6] 等。伊辛模型以描述支持马约拉纳零模式 (MZM) 的物理系统中产生的准粒子的行为而闻名 [7, 8]。由排列在二维表面上的量子比特集合组成的晶格模型是研究此类拓扑系统的实用工具。这些模型,例如稳定器代码 [9, 10],允许在非局部自由度中编码量子信息的计算方案。典型的例子是 Kitaev 在参考文献 [6] 中介绍的环面代码。它对环面上定义的方形自旋晶格的退化基态中的逻辑量子比特进行编码 [11]。环面代码出现在 KHLM 的阿贝尔相 [11, 12]。环面代码允许局部、点状缺陷和非局部、线状缺陷。穿刺是与晶格上的孔相对应的局部缺陷。它们通过编织被引入作为量子记忆和计算的候选者 [13–15],而扭曲是非局域畴壁的端点,可强制实现 toric 代码任意子的对称性。后一种缺陷已用拓扑量子场论 (TQFT) [16, 17] 进行了描述。它们在计算上也很有趣,因为它们在聚变和交换下表现得像 Majorana 零模式 [1, 18, 19]。参考文献 [20] 甚至引入了这两种缺陷类型的新混合,也能够编码逻辑量子位。在本文中,我们研究了 toric 代码上另一种缺陷的拓扑性质,即穿孔
路径积分图景之所以重要,有两个原因。首先,它提供了量子力学的另一种补充图景,其中经典极限的作用显而易见。其次,它为研究微扰理论不充分或完全失效的领域提供了一条直接途径。在量子力学中,解决此类问题的标准方法是 Wentzel、Kramers 和 Brillouin 的 WKB 近似。然而,将 WKB 近似推广到量子场论是极其困难的(甚至是不可能的)。相反,费曼路径积分的非微扰处理(在量子力学中等同于 WKB)可以推广到量子场论中的非微扰问题。在本章中,我们将仅对玻色子系统(如标量场)使用路径积分。在后续章节中,我们还将对路径积分进行全面的讨论,包括它在费米子场、阿贝尔和非阿贝尔规范场、经典统计力学和非相对论多体系统中的应用。