非亚伯式拓扑顺序是易于断层量子计算的最有希望的平台之一[1]。这些阶段中的激发是非亚伯式的,它们是具有非亚伯交换统计的准粒子[2]。非亚伯里亚人提供了拓扑堕落的来源,可以非本地的信息存储。然后可以通过编织Anyons来操纵信息,这一过程由于其拓扑性质而反对局部扰动的反应[3-7]。在实现非亚洲拓扑秩序的最有希望的系统中,是强磁场中的2 d电子气体,它们可以形成分数量子霍尔(FQH)状态。令人兴奋的是,在FQH状态[8]中,有越来越多的实验证据,以及以填充分数为ν= 5 /2的非亚伯FQH状态,支持最简单的非亚伯利亚人,Ising,Anyon [9-13]。Ising Anyons对通用量子计算不足[1]。相比之下,拓扑命令支持所谓的斐波那契,可以用作通用量子计算机[14]。这是从fibonacci anyon的融合规则τ×τ= 1 +τ的角度来看,其中τ是fibonacci anyon,1是微不足道的anyon,×表示任何融合。因此,对观察到的ν= 12/5 fqh状态引起了极大的兴趣,因为数字表明这可能对z 3 read-rezayi(RR)状态[15] [15],该状态支持斐波那契任何人,除其他] Abelian [16,17]。[7]对于猜测ν= 5 /2状态。这些包括斐波那契的成核不幸的是,其他人的存在可以通过进入编织过程来弥补斐波那契人的操纵,因此在参考文献中讨论的在干涉实验中对非亚伯利亚人的识别感到沮丧。因此,了解是否有可能实现支持斐波那契的拓扑顺序,以作为其唯一的激发。已经提出了一些建议,以实现这种斐波那契状态。
主要关键词