数字电路和系统的高可靠性得益于多种方法。这些方法确保设计在规定的条件下和预计的使用寿命内发挥其功能。它们涵盖了与电子产品的制造和现场运行相关的不同方面。例如,洁净室控制杂质,工业控制系统实现生产一致性;封装前后的老化和测试确保在对电路施加应力后检测到设计弱点和制造缺陷。在将半导体推向市场之前,所有这些方法都是必要的,但它们并非万无一失。尽管小型化提供了许多优势,但每个新的 CMOS 节点都面临可靠性问题,因为这一趋势正在迅速接近操作和制造的物理极限 [1]。数字系统在其使用寿命的三个阶段可能会出现故障,如图 1 中的浴盆曲线所示 [39]。早期故障被称为早期死亡率;工作寿命期间发生随机故障,磨损故障
量子隐形传态的理想实现依赖于获得最大纠缠态;然而,在实践中,这种理想状态通常是无法获得的,人们只能实现近似隐形传态。考虑到这一点,我们提出了一种量化使用任意资源状态时近似隐形传态性能的方法。更具体地说,在将近似隐形传态任务定义为对单向局部操作和经典通信 (LOCC) 信道上的模拟误差的优化之后,我们通过对更大的两 PPT 可扩展信道集进行优化来建立此优化任务的半确定松弛。我们论文中的主要分析计算包括利用身份信道的酉协方差对称性来显著降低后者优化的计算成本。接下来,通过利用近似隐形传态和量子误差校正之间的已知联系,我们还应用这些概念来建立给定量子信道上近似量子误差校正性能的界限。最后,我们评估各种资源状态和渠道示例的界限。
许多工业界感兴趣的问题都是 NP 完全的,随着输入规模的增加,计算设备的资源会迅速耗尽。量子退火器 (QA) 是一种物理设备,旨在利用自然界的量子力学特性来解决这类问题。然而,它们与经典机器上的高效启发式算法和概率或随机算法相竞争,后者允许找到大型 NP 完全问题的近似解。虽然 QA 的第一批实现已经投入商业使用,但它们的实际好处还远未得到充分开发。据我们所知,近似技术尚未受到广泛关注。在本文中,我们探讨了如何为量子退火程序系统地构建不同程度的问题近似版本,以及这如何影响结果质量或给定一组量子比特上较大问题实例的处理。我们在不同的开创性问题上展示了模拟和真实 QA 硬件上的各种近似技术,并解释了结果,以更好地理解当前和未来量子计算的现实能力和局限性。
完全同态加密(FHE)是在加密数据上执行计算的强大工具。Cheon-Kim-Kim-Song(CKKS)方案是近似FHE的实例化,对于具有真实和复数的机器学习应用程序特别有效。al-尽管CKK具有明确的效率优势,但混乱始终围绕着准确描述图书馆中的应用,并安全地实例化了这些问题的计划,尤其是在Li和Micciancio(Eurocrypt'21)的关键恢复攻击之后,用于IND-CPA D设置。目前在IND-CPA D的应用程序不合时宜的,通用的定义以及软件库中CKK的高效,特定于应用程序的实例之间存在差距,这导致了Guo等人的最新攻击。(USENIX SECurity'24)。要缩小此差距,我们介绍了应用程序意识到的同构加密(AAHE)的概念,并设计了相关的安全性定义。该模型更紧密地与实践中的方案实施和使用的方式更加紧密,同时还可以识别和解决流行库中潜在的漏洞。然后,我们提供了一种应用程序规范语言(ASL),并制定指南,以实现AAHE模型,以实现CKKS实际应用的IND-CPA D安全性。我们在OpenFhe库中提出了ASL的概念证明实现,以显示Guo等人的攻击方式。可以反驳。更重要的是,我们表明我们的新模型和ASL可用于确切方案的安全有效实例化,并应对Cheon等人最近的IND-CPA D攻击。(CCS'24)和Checri等。(加密24)。
第一作者 Ragini Singh 是电子和通信工程师,目前正在印度博帕尔 (MP) RGPV 攻读微电子和 VLSI 设计硕士学位。第二作者 Sandip Nemade 教授拥有 VLSI 设计学位,目前担任印度博帕尔 (MP) 技术学院电子和通信系助理教授。
使用∂H(·)提供的一阶信息通过某些迭代过程最小化h函数h时,基本细分的连续性将作为至关重要的问题出现。看来,上述亚差异的人都没有作为多功能的连续,只有mordukhovich和Clarke是外部半连续的。在算法方案中,缺乏细分差异的内部半符号阻碍了关键证书的定义。此类证书的目的是双重的。首先,它们允许使用一个足够接近某个临界点的解决方案来停止迭代过程。同时,它们提供了临界条件0∈∂H(Z)的渐近满意度。也就是说,如果临界点满足某些子构想的条件,则只有多函数的内部半接对性∂H(·)确保构建序列{gn∈(z n)}→0对于任何序列{z n}→Z→z→0都是可能的。
8超出块组成的功能50 8.1溢流力:案例研究。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。51 8.1.1近似度上限。。。。。。。。。。。。。。。。。。。。。。。。。51 8.1.2近似度下限。。。。。。。。。。。。。。。。。。。。。。。。。52 8.1.3 Surj的阈值度。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。52 8.1.3 Surj的阈值度。。。。。。。。。。。。。。。。。。。。。。。。。。。。。53 8.2其他功能和应用程序,用于量子查询复杂性。。。。。。。。。。54 8.3 AC 0的近似度。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。55 8.4引理证明54。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。55 8.4.1获得完整的引理。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。55 8.4.1获得完整的引理。。。。。。。。。。。。。。。。。。。。。。。。。。。。。59 8.5碰撞和PTP下限。。。。。。。。。。。。。。。。。。。。。。。。。。。。。60 8.6元素独特性下限。。。。。。。。。。。。。。。。。。。。。。。。。。。。67
Farhi 等人 [ 17 ] 证明,在某些条件(难以满足)下,QAOA 可以找到组合优化问题的近似解。该算法的潜力和挑战引起了许多研究人员的注意,其中包括 [ 6 , 29 , 44 ] 等。QAOA 的灵感来自量子绝热算法 (QAA),该算法旨在找到 Hermitian 矩阵的最小特征值,该特征值称为基态能量 [ 17 , 19 , 20 ]。QAA 从一个 Hermitian 矩阵(具有已知基态)开始,在追踪基态的同时逐渐演化为另一个具有未知基态的 Hermitian 矩阵。QAA 的演化时间可能是指数级的,因此计算成本很高 [ 17 ]。此外,QAA 的成功概率通常不是运行时间的单调函数,而 QAOA 具有最优参数的性能会随着迭代次数(称为级别)的增加而提高 [ 17 ]。