目的:认知功能在评估个人生活质量方面起着关键作用。本研究旨在调查具有抗氧化和抗炎特性的天然二羧酸壬二酸 (AzA) 如何影响氯化铝 (AlCl 3 ) 引起的大鼠海马行为变化和生化变化。方法:将 32 只雄性 Wistar 大鼠分为四组,分别通过口服管饲法接受蒸馏水、AzA 50 mg/kg、AlCl 3 100 mg/kg 和 AzA 加 AlCl 3 6 周。使用开放式迷宫、高架十字迷宫、新物体识别 (NOR)、被动回避任务和 Morris 水迷宫 (MWM) 测试评估行为变化。此外,还检测了丙二醛 (MDA)、羰基蛋白、肿瘤坏死因子-α (TNF- α )、白细胞介素-1β (IL-1 β )、核因子-κB (NF- κ B)、C/EBP 同源蛋白 (CHOP)、糖原合酶激酶-3β (GSK-3 β )、脑源性神经营养因子 (BDNF) 和乙酰胆碱酯酶 (AChE) 活性。结果:AzA 显著影响 AlCl 3 引起的焦虑样行为和学习记忆障碍。它还降低了 AlCl 3 对 MDA、羰基蛋白、TNF- α 、IL- 1 β 、NF- κ B 和 GSK-3 β 状态的毒性作用;然而,它对 AlCl 3 引起的 CHOP、BDNF 和 AChE 活性变化的有益影响并不显著。结论:这些研究结果表明,AzA 可以改善行为和认知功能,并且几乎可以限制 AlCl 3 引起的氧化应激和神经炎症。
神经营养因子,包括NGF,BDNF和神经胶质细胞系的神经营养因子(GDNF),通过激活诸如PI3K/AKT和MAPK/ERK PATH的细胞内信号传导级联,刺激神经元存活和轴突伸长。该信号传导促进了细胞骨架重排和生长锥的进步。再生轴突的再生对于恢复神经传导速度至关重要[6]。尽管周围神经具有内在的再生能力,但较大的神经间隙和未对准的纤维仍然是重大挑战。这需要辅助策略,例如神经移植,导管和生物材料来弥合缺陷并优化再生环境[7]。
摘要:细胞周期蛋白依赖性激酶样5(CDKL5)缺陷障碍(CDD)是一种罕见的神经发育 - 精神疾病,是由X连接的CDKL5基因突变引起的。CDD的特征是广泛的临床表现,包括早期发作性癫痫发作,智力障碍,肌无力,视觉障碍和类似自闭症的特征。CDKL5敲除(KO)小鼠概括了CDD的几个特征,包括自闭症行为,学习和mem-ory和运动刻板印象。这些行为改变伴随着神经元成熟和存活减少,树突状分支和脊柱成熟降低以及明显的小胶质细胞激活。目前尚无治愈或有效的治疗方法可以改善该疾病的症状。有氧运动已知会在大脑中发挥多种有益作用,这不仅是通过增加神经发生,而且还通过改善运动和认知任务。迄今为止,尚无研究分析体育锻炼对CDD小鼠模型表型的影响。鉴于自愿运行对各种人类神经发育障碍小鼠模型的大脑的积极影响,我们试图确定一个月以上的自愿日常运行是否可以改善CDKL5 KO小鼠的大脑发育和行为缺陷。我们的研究表明,长期自愿运行改善了CDKL5 KO小鼠的超塑料和冲动行为和记忆力。这与海马神经发生,神经元存活,脊柱成熟和小胶质细胞活化的抑制相关。这些行为和结构改进与BDNF水平升高有关。鉴于BDNF对脑发育和功能的积极影响,目前的发现支持运动作为CDD辅助治疗的积极好处。
在人类和其他灵长类动物中,由于BDNF基因在巨核细胞中的表达,血小板含有高浓度的脑源性神经营养因子。相比之下,通常用于研究中枢神经系统病变的影响的小鼠在血小板中没有明显水平的脑衍生的神经营养因子,并且它们的巨核细胞没有大量的bdnf基因。在这里,我们使用两种良好的CNS病变模型探索了血小板脑源性神经营养因子的潜在贡献,并使用“人源化”小鼠在巨核细胞特异性启动子的控制下使用“人性化”小鼠进行表达BDNF基因。使用二元术和通过sholl分析后评估的视网膜神经节细胞的树突状细胞的树状完整性标记了由含有脑源性神经营养因子的小鼠制备的视网膜外植体。将结果与野生型动物的视网膜以及补充饱和浓度的脑源性神经营养因子或tropomyosin激酶B抗体激动剂ZEB85的野生型外植体进行了比较。还进行了视神经张力,视网膜神经节细胞的树突在伤害后7天评估,将血小板中含有脑源性神经营养因子的小鼠与野生型动物进行了比较。在含有脑源性神经营养因子的小鼠中,纯合子的平均血清脑源性神经营养因子水平为25.74±11.36 ng/ml,17.02±6.44 ng/ml的杂氮小鼠,近乎杂合小鼠,接近原始的小鼠。基于细胞计数的视网膜神经节细胞存活在所有四组中均相似,显示约15%的损失。表现出强大的树突复杂性保存,类似于与补充脑衍生的神经营养因子或真霉素受体激酶B抗体抗体抗体激动剂的培养基孵育的野生型外植体,Zeb85。曲线下的sholl区域为1811±258、1776±435和1763±256,而野生型对照组中的Sholl区域为1406±315(p≤0.001)。在评估反式基因小鼠中视网膜神经节细胞的树突时,还观察到了一种强大的神经保护作用,与野生型相比,弯曲曲线下的视网膜神经节细胞的树突明显更高(2667±690和1921±392,p = 0.026),并且在无显着差异中,并且是无显着差异的。重复实验发现细胞存活没有差异,两者均显示约50%的损失。这些结果表明,血小板脑衍生的神经营养因子对视网膜神经节细胞的树突复杂性具有强大的神经保护作用,在体内和体内模型中,这表明血小板脑源性的神经营养因子可能是灵长类动物的重要神经保护因子。
hirschsprung疾病(HSCR)的特征是胃肠道中没有神经节细胞的先天性缺失,从而导致排便,便秘和肠梗阻受损。当前的HSCR诊断是基于直肠吸力活检(RSB),这在新生儿中可能很复杂。有时会延迟诊断会增加临床并发症的风险。因此,有新的非侵入性诊断方法是客观的,更可行的,并且为潜在的手术干预提供了更早的基础。近年来,MicroRNA(miRNA)已成为相关的早期标志物的重点,该标志物可以提供对疾病的病因和进展的更多见解。因此,在寻找非侵入性HSCR生物标志物时,我们分析了HSCR患者尿液样品中的miRNA表达。使用微阵列的5例HSCR患者的结果显示,HSA-MIR-378 H,HSA-MIR-210-5P,HSA-MIR-6876-3P,HSA-MIR-634和HSA-MIR-634和HSA-MIR-6883-3P是最上升的miRNA;而HSA-MIR-4443,HSA-MIR-22-3P,HSA-MIR-4732-5P,HSA-MIR-3187-5P和HSA-MIR-371B-5P最下调的miRNA。在mirnawalk和mirdb数据库中进一步搜索表明,这些失调的miRNA肯定鉴定出靶标HSCR相关基因,例如RET,GDNF,BDNF,BDNF,EDN3,EDNRB,ERBB,ERBB,NRG1,NRG1,SOX10;以及神经元迁移和神经发生中暗示的其他基因。最后,我们还可以通过RT-QPCR验证HSCR尿中的一些miRNA变化。总的来说,我们的分析的HSCR队列表现出失调的miRNA表达表达,可以在尿液中检测到。我们的发现为将来使用特定的尿液miRNA特征作为非侵入性HSCR诊断方法开辟了可能性。
炎症、γ-氨基丁酸能 (GABAergic) 功能降低和神经可塑性改变是重度抑郁症 (MDD) 中同时发生的病理生理学。然而,这些生物学变化之间的联系仍不清楚。我们假设炎症会导致 GABAergic 中间神经元标记物缺陷,并且这种影响是由脑源性神经营养因子 (BDNF) 介导的。我们在此报告,在第一批 C57BL/6 小鼠(n = 72;10 – 11 周;50% 为雌性)中腹膜内注射脂多糖 (LPS) (0.125、0.25、0.5、1、2 mg/kg) 引起的全身炎症导致前额皮质 (PFC) 和海马 (HPC) 中的白细胞介素 1-beta 和白细胞介素-6 增加,使用酶联免疫吸附测定 (ELISA) 测量。定量实时聚合酶反应 (qPCR) 用于探索 LPS 对 GABAergic 中间神经元标志物表达的影响。在第二组 (n = 39; 10 – 11 周; 50% 为雌性) 的 PFC 中,2 mg/kg LPS 降低了生长抑素 ( Sst ) (p = 0.0014)、小白蛋白 ( Pv ) (p = 0.0257)、皮质抑素 ( Cort ) (p = 0.0003)、神经肽 Y ( Npy ) (p = 0.0033) 和胆囊收缩素 ( Cck ) (p = 0.0041) 的表达,并且不影响促皮质素释放激素 ( Crh ) 和血管活性肠肽 ( Vip ) 的表达。在 HPC 中,2 mg/kg LPS 降低了 Sst (p = 0.0543)、Cort (p = 0.0011)、Npy (p = 0.0001) 和 Cck (p < 0.0001) 的表达,但不影响 Crh 、 Pv 和 Vip 的表达。LPS 降低了 PFC (p < 0.0001) 和 HPC (p = 0.0003) 中 Bdnf 的表达,这与受影响的标志物 (Sst、Pv、Cort、Cck 和 Npy) 显着相关。总之,这些结果表明炎症可能是导致 MDD 中观察到的皮质细胞微电路 GABAergic 缺陷的因果关系。
背景证据表明,不重点失调与重度抑郁症(MDD)之间存在关联。pentoxifyline(PTX)是一种磷酸二酯酶抑制剂,已被证明可减少促炎活性。这项研究的目的是评估MDD患者的PTX作为西妥位型的辅助剂后,评估抑郁症状和促炎性标记的变化。方法将100例患者随机分配到西妥位丙酰胺(20 mg/day)加安慰剂(每天两次)(n = 50)或西妥位丙酰胺(20 mg/day)加上PTX(400 mg)(每天两次)(每天两次)(n = 50)。汉密尔顿抑郁率评分量表17(Ham-d-17)在基线,第2、4、6、8、10和12周,以及肠介菌1-β(IL-1-β)的血清水平,肿瘤坏死因子-α,c-反应性蛋白,IL-6,IL-6,Serotonin,IL-10和脑质co-neu-neu-neu-neu-neu-dewwew是评估。Results HAM-D-17 score in the PTX group significantly re- duced in comparison to the control group after weeks 4, 6, 8,10, and 12 ((LSMD): − 2.193, p = 0.021; − 2.597, p = 0.036; − 2.916, p = 0.019; − 4.336, p = 0.005; and − 4.087, p = 0.008, 分别)。与安慰剂组相比,接受PTX的患者的反应更好(83%)和缓解率(79%)(分别为49%和40%,P = 0.006和P = 0.01)。此外,PTX组的促炎因子血清浓度的降低以及5-羟色胺和BDNF的增加明显大于安慰剂组(p <0.001)。结论这些发现支持PTX作为MDD患者中具有抗炎作用的辅助抗抑郁药的安全性和功效。
摘要 - 成人海马的亚晶体区(SGZ)中的神经发生,可以通过多种手段来刺激,包括通过将实验动物暴露于丰富的环境中,从而提供额外的鼻子,社交和运动刺激。在丰富的动物中产生的有形健康和认知益处,包括改善对精神病,神经学和神经退行性疾病的建模,这可能会影响人类,这可能部分是由于神经元的产生增强所致。神经元反应富集的关键因素是释放脑衍生的神经营养因子(BDNF)和有丝分裂原活化蛋白激酶(MAPK)级联反应的激活,这可能导致刺激Neuroogenese或Neuroogenese的刺激。有丝分裂原和应激激活的蛋白激酶1(MSK1)是BDNF和MAPK下游的一种核酶,可调节转录。MSK1先前已经与缺乏MSK1蛋白的小鼠的研究有关基础和刺激的神经发生。在本研究中,使用仅缺乏MSK1激酶活性的小鼠,我们表明SGZ(KI-67染色)的细胞增殖速率没有由MSK1激酶DEAD(KD)突变造成的,并且与控制后水平的水平没有分歧。然而,与野生型小鼠相比,在标准housed和富集的MSK1 KD小鼠中,双铁蛋白(DCX)阳性细胞的数量都更大。2020年作者。由Elsevier Ltd代表IBRO出版。这是CC BY-NC-ND许可证(http://crea-tivecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。这些观察结果表明,尽管MSK1不影响神经元前体的增殖基础速率,但MSK1负责调节注定成为神经元的细胞数量,可能是对新神经元数量的稳态控制,而新神经元的数量则是整合到齿状gyrus中的新神经元的数量。
神经调节是旨在调节弥漫性神经元活性以实现治疗作用的技术的集合。通过在大脑中应用外部能量(例如电流,磁场,光或超声)来获得调制时,它被称为神经刺激1。非侵入性脑刺激(NIBSS)技术,例如电击疗法(ECT),经颅磁刺激(TMS)和经颅电刺激(TES),对大脑发挥可测量的结构和功能作用。这些影响包括增加神经可塑性2,大脑结构3和连通性4的变化以及脑衍生的神经营养因子(BDNF)水平5的恢复。某些NIBSS溶液是FDA批准的,用于治疗各种脑部疾病,包括抑郁症6和强迫症7(OCD),强调了神经调节的治疗潜力。
心理和认知障碍在现代社会中越来越关注,影响到2022年全球超过10亿人口。了解对精神疾病的敏感性和开发及时诊断,预防和治疗的方法是必不可少的。遗传因素越来越多地被认为是大多数精神疾病(2)的易感因素(2),并且脑形态发生受损被认为是重要的根本原因(3,4)。大脑发育是一个复杂的多阶段过程,依赖于各种细胞和分子参与者的协调作用(5,6)。涉及大脑发育的基因的失调或功能障碍,包括编码神经营养因素,引导分子,生长因子受体,间细胞间粘附分子等,以及其他可能会改变脑结构或接线,使人对精神和认知灾害的易感性。例如,在墨西哥人美国人(7)(7)中,基因组变体(例如RS11030103-G,RS6265-T和RS28722151-G)与脑衍生的神经营养因子(BDNF)基因在脑衍生的神经营养因子(BDNF)基因(MDD)中相关(7)。同样,在神经生长因子(NGF)基因内的变体RS2856813-G和RS6678788-T与美国人群中女性的主要情感障碍有关(8)。这强调了在该领域进行更广泛研究的必要性。识别这种基因,阐明其遗传变异的功能意义,并为在精神分裂症的背景下,在编码受体酪氨酸激酶ERBB4(RS707284-G和RS7598440-A)的基因中的单核苷酸基因组变异(SNP)以及引导分子EFNB1(RS1048948033-A和RS)在犹太人群(9)和颅骨综合征中(分别以脑局部和智力障碍为特征的疾病)(10)(10)。尽管最初在1891年提出了精神障碍的形态发生理论,并随后受到大量证据的支持,但我们对单个分子对塑造人类精神活动和精神健康的特定贡献的理解仍然受到限制。