光伏能源一直在不断扩展,它将继续作为最流行的可再生能源源,从最近对实用程序扩展的存储系统进行质量和先进的智能功能,从而增加了功率电网(1)的稳定性和弹性。光伏逆变器中采用的技术是有效的,并且非常稳定。在大多数国家 /地区也进行了产品认证,与网格法规结合使用,为行业带来了一个通用和统一的技术和质量基础,这使得降级者和公司更容易构建新项目并继续增长(2)。本文重点介绍了对大型实用性缩放光伏植物中使用的主要技术的综述,该技术在cir拓扑,冷却,系统集成和系统托图方面。特别关注在不同国家遇到的不同气候的解决方案。本评论以第2节中的电路拓扑讨论开始。在这里,中性点的配置与三级二极管夹具的拓扑结合(3)。单阶段光伏应用中的三个级别拓扑具有很高的效率和可靠性(4),并在行业中广泛使用。此拓扑与热管冷却一起用于室外逆变器,并在第3节中给出了细节。在系统实现方面,有两个主要流都广泛使用。室外额定逆变器安装在室内或容器中的室内逆变器上。在第4节和第5节中对此进行了处理,其中给出并讨论了主要两种解决方案。每种类型的选择在很大程度上取决于本地环境条件和本地reg-
非线性电子电路提供了产生混乱行为的有效方法[1] [2] [3]。Chuas电路是由Cai Shaotang教授在1983年[4] [5] [6] [7]制造的简单非线性混沌电路。chua的电路包含四个基本元素和非线性抗性,但有数百个研究论文。已经深入研究了Chua电路的细节,包括拓扑,数值模拟,动力学特征和物理现象[8] [9] [10] [11] [12]。由于Chua的电路系统具有极端的初始价值敏感性和良好的伪随机性的特征,该特征已在科学和工程中广泛使用,[13],机器人[14],随机发生器实现[15],安全连接,安全连接甚至图像加密[16],以及同步的加密[17]。在许多非线性系统和电子电路中都发现了多个吸引子的共存[18] [19] [20] [21]。通常,共存吸引子的外观与系统对称性有关,并紧密取决于系统初始条件。与多个吸引子的混乱系统能够在基于混乱的工程技术(例如神经网络[22],图像加密[23],控制系统[24]和随机数[25] [25]中提供更多复杂性。因此,与共存的混乱系统目前已成为相当大的兴趣。在1971年,根据Ciruit理论的完整性原理,Chua预测了第四个电子组合和名为Memristor,该原理具有记住过去电荷的独特表现[26] [27]。备忘录是由惠普(Hewlett Packard)实验室创建的,
接近效应是一种现象,当一种正常金属靠近超导体的超导特性。接近效应将超导能转移到正常金属或半导体中的能力在超级传导电子和量子技术的各个领域中打开了广泛的潜在应用。在S波超导体 - 拓扑绝缘子(Ti)结构中,接近效应诱导一个状态呈现出无旋转的超导体,并用Majorana零模式[1,2]进行了描述。Majorana模式是非本地的,与环境相互作用弱,因此被认为是在Qubits中使用的有前途的对象。因此,在超导体和拓扑材料(拓扑绝缘子,Weyl semimetal等)的界面上产生的效果近年来吸引了越来越多的关注[3-12]。在研究拓扑结构中的近端效应时,所研究的结构通常是二维ti [7,8],Weyl semimetal [9,10]或三维拓扑结构的晶须[11,12]的晶须[11,12],在其超导不导致的效果下,使用了Proximenty效果。触点的紧密排列导致超电流的流动,超导芯(2D TI)或超导表面(3D TI)的形成,其特性是研究的对象。tase 3是自1960年代中期以来已知的准二维过渡金属trichalcogenide [13]。有关Tase 3的超导特性的信息是有争议的。它具有链状结构,具有单斜晶单元,该结构属于非中心对称的正交空间群P2 1 /m [13],并揭示了金属电导率。一方面,Tase 3的一些晶体在约2.2 K的温度下进入超导状态[14-16],并带有丝状超导体[17]。另一方面,没有超导性是
摘要。时锁拼图是独特的加密原始图,它使用计算复杂性将信息保密在一段时间内保持秘密,此后安全性到期。不幸的是,在引入的二十五年之后,当前的时间锁定原料的分析技术没有提供合理的机制来构建多方加密原始的原始系统,这些密码原始的原始系统将到期的安全性用作建筑块。正如在同行评审的文献中重新指出的那样,当前对此问题的尝试缺乏合成性,完全一致的分析或功能。本文介绍了一个新的基于理论的复杂性框架和新的结构定理,以分析具有完整通用性和组成的定时原则(这是中央模块化协议设计工具)。该框架包括一个基于细粒度的复杂性的安全模型,我们称之为“剩余复杂性”,该模型可能会在定时原语上泄漏。我们针对多方计算协议的定义通过考虑细粒度的多项式电路深度来概括文献标准,以模拟可行时间到期的计算硬度。我们的组成理论依次又导致(细粒度)安全性降解,因为项目的组成。在我们的框架中,模拟器具有计算深度的多项式“预算”,在组成中,这些多项式相互作用。最后,我们通过典型的拍卖应用演示如何应用我们的框架和定理。在第一次,我们证明可以以完全一致的方式证明,具有虚假的假设 - 基于漏水,温和安全的组件的多方应用程序的属性。因此,这项工作显着地将可证明的密码学扩展到了独立的任意多项式安全性的世界,再到经常出现在实践中的小时域的领域,在实践中,组件的安全性到期,而较大的系统仍然安全。
成像脑学习和记忆电路激酶信号传导是一个巨大的挑战。基于相的激酶(SPARK)生物传感器的基于相的活性报告剂允许对体内多种相互作用激酶的回路定位研究,包括蛋白激酶A(PKA)(PKA)和细胞外信号调节激酶(ERK)信号。在精确映射的果蝇脑学习/记忆力中,我们发现PKA和ERK信号差异富集在不同的Kenyon细胞连接节点中。我们发现,增强正常电路活性会诱导电路定位的PKA和ERK信号传导,从而在新的突触前和突触后结构域内扩大激酶功能。活性诱导的PKA信号传导与先前选择性ERK信号节点的广泛重叠,而活性诱导的ERK信号在新的连接节点中产生。我们发现,肯尼因细胞中的靶向突触传输阻滞提升了基线ERK信号通常高的肯尼恩细胞中的电路 - 定位ERK诱导,这表明侧向和反馈抑制。我们发现通路链接的孟-PO(人类SBK1)丝氨酸/苏氨酸激酶的过表达,以改善学习获取和记忆巩固导致可分离的Kenyon细胞电路连接节点中的PKA和ERK信号急剧增强,从而揭示了同步和未提到的信号启动的潜在。最后,我们发现一种机械诱导的表现性癫痫发作模型(易于震惊的“爆炸敏感”突变体)具有强烈升高的电路定位的PKA和ERK信号传导。两性在所有实验中均使用,除了半合基因唯一的癫痫发作模型。过度兴奋,学习增强和表皮性癫痫模型具有相当升高的相互作用激酶信号传导,这表明使用依赖性诱导的共同基础。我们得出的结论是,PKA和ERK信号调制在与学习/记忆潜力有关的癫痫发作易感性基础的使用依赖性空间电路动力学中进行了局部协调。
过去有自己的磁场,其小尺寸导致核心的能量损失,从而导致核心冷却和产生磁场的能力(3)。美国物理学家兼退休的首席科学家詹姆斯·劳尔·格林(James Lauer Green)提议在拉格朗日(Lagrange)1点(L1)(4)上产生磁场。Lagrange点是在空间中的sta tionary位置,在该空间中,在与更大的物体相关的旋转框架内,在小体上作用的引力作用在小体内。在他的学术论文中,绿色提议将人工磁层屏蔽放在L1上,以阻止太阳风,从而始终侵蚀火星大气(4)。他建议这样做可以使痕量气体的积累,从而逐渐形成火星上的微弱气氛。随着时间的流逝,温室气体的存在将有助于使大气变暖,从而使被困的水解冻,然后将其转化为水蒸气。此过程有可能补充火星海洋的大约七分之一(4)。我们的研究重点是通过使用太阳能帆,太阳能电池板和超级电管磁体来进一步发展这一想法,以保护火星免受太阳风的影响并使火星可居住(图1)。为了生成人造磁场,超导磁体提供了有希望的解决方案。它们经常用于医院,用于磁共振成像和诸如核磁共振光谱ETERS,融合反应堆和粒子加速器等科学仪器中(5)。在这些条件下,超导磁体的绕组具有零电阻。这些磁铁表现出降低的电阻和提高的效率,从而可以产生较大的磁场,并具有较低的能量消耗。超导磁体表现出零电阻,并且没有产生热量,从而使它们保持高电流强度(6)。维持零电阻的主要要求是将温度降低到极低的值,这是通过将电气棒网浸入液体氦气中来实现的(6)。为了最大程度地减少气体蒸发,将浓度浸入另一个装有液氮的露水容器中。即使CIR CUIT紧密关闭,提供给电路的电流也会持续到所需的时间。超导磁体非常适合在太空中使用,因为它们消耗的功率很少,并且超导体可以在当前的登角机构中运行,而后者比传统导体高得多(7)。要运输和部署这些磁铁,太阳帆可能是理想的解决方案。太阳帆利用太阳发出的光的压力推动了航天器。太阳能航行消除了燃料的需求,因为它们依靠光子进行运动(8)。为了向磁铁提供能量,可以使用太阳能电池板。当太阳照在太阳能电池板上时,来自太阳的能量
用lutetium-177标记的配体对前列腺特异性膜抗原(PSMA)进行治疗,用于治疗耐castration-耐耐石腺的前列腺癌的表达PSMA表达转移。为此,使用了一个分子,该分子与前列腺癌细胞的细胞表面上的酶结合,即所谓的前列腺特异性膜抗原(PSMA)。该分子与放射性发射极(此处:Lutetium-177 = Lu-177)结合起来。自2014年11月以来,我们的诊所已提供了这种类型的治疗。将放射性药物(Lutetium-177标记的前列腺特异性膜抗原配体)用于输注静脉,并迅速积聚在先前由PET/CT检测到的转移中(通过GA-68-PSMA或使用F-18-PSMA或使用F-18-PSMA-PET-PET捕性剂进行的受体成像)。因此,肿瘤/转移被局部辐照,旨在对肿瘤组织产生抑制作用。存储和肿瘤体积的强度对治疗的成功有影响。一种治疗性LU-177-PSMA配体已于2022年获得批准,现在在欧洲也可以在欧洲以商业名称pluvicto®®在愿景批准研究的有利结果之后在欧洲上市。也有可能采用类似的化合物进行治疗,该治疗直接在科隆大学医院放射性药物部门直接在现场标记为lu-177,目的是根据《德国药品法》(第13段,第13段)(第13段)2 AMG)。 研究概念的有效性已通过研究(治疗研究和视力研究)和许多已发表的观察性研究证明。2 AMG)。研究概念的有效性已通过研究(治疗研究和视力研究)和许多已发表的观察性研究证明。目前在科隆大学医院的患者护理中使用了这两种治疗选择(Pluvicto®的商业采购,内部生产LU-177-PSMA配体)。通常,它不是一种治疗疗法,而是降低疾病进展或暂时减轻肿瘤负担的方法。迄今为止,这种疗法大多是在既有耐药疗法后的先进的,耐cuit割阶段都提供的,通常是在使用现代雄激素受体信号抑制剂和化学疗法后进行治疗后(例如,Docetaxel)。 无法保证对LU-177-PSMA配体治疗的反应,但迄今为止的经验表明,大约50-60%的患者对LU-177- PSMA配体治疗反应。Docetaxel)。无法保证对LU-177-PSMA配体治疗的反应,但迄今为止的经验表明,大约50-60%的患者对LU-177- PSMA配体治疗反应。
C. J. Fourie,IEEE,K。Jackman,M。M. Botha,IEEE,S。Razmkhah,P。Febvre,C。L. Ayala,IEEE,IEEE,Q. Q. Q. Q. Q. Q. Q. Q. Q. Q. Q. Q. Q. IEEE , S. Gupta, Senior Member, IEEE , S. Nazarian, Member, IEEE , and M. Pedram, Fellow, IEEE Abstract — The IARPA SuperTools program requires the devel- opment of superconducting electronic design automation (S-EDA) and superconducting technology computer aided design (S-TCAD) tools aimed at enabling the reliable design of complex superconduct- ing digital circuits with数百万的约瑟夫森连接。在Supertools计划中,ColdFlux项目介绍了四个领域的S-EDA和S-TCAD工具研发:(i)RTL合成,体系结构和验证; (ii)模拟设计和布局综合; (iii)物理设计和测试; (iv)设备和过程模拟/仿真和单元库设计。Capabilities include, but are not limited to: device level modeling and simulation of Josephson junctions, modeling and simulation of the superconducting process manufacturing processes, powerful new electrical circuit simulation, parameterized schematic and layout libraries, optimization, com- pact SPICE-like model extraction, timing analysis, behavioral, reg- ister-transfer-level and logic syntheses, clock tree synthesis, place-在存在磁场和捕获通量的情况下,指定和路由,布局 - 式审理的提取,功能验证以及设计的评估。ColdFlux由四大洲的六个研究小组组成。在这里,我们概述了与该项目相关的当前和计划活动的概述,并证明了为允许为百万门巡回赛设计工具开发设计工具的决定性假设和决策。索引术语 - 设计自动化,通量固定,集成的CIRCUIT合成,过程建模,超导综合cir-cir-cir-cirs
随机量子电路通常被认为难以进行经典模拟。在某些情况下,这已被正式推测——在深度二维电路的背景下,这是谷歌最近宣布“量子计算霸权”的基础——并且没有证据反对更普遍的可能性,即对于具有均匀随机门的电路,典型实例的近似模拟几乎与精确模拟一样困难。我们通过展示一个浅随机电路系列来证明情况并非如此,该电路系列在标准难度假设下无法有效地进行经典模拟,但可以近似模拟除超多项式一小部分电路实例之外的所有电路实例,时间与量子比特和门的数量成线性关系;这个例子限制了最近随机电路模拟的最坏情况到平均情况简化的稳健性。虽然我们的证明是基于一个人为的随机电路系列,但我们进一步推测,足够浅的恒定深度随机电路通常可以有效地模拟。为此,我们提出并分析了两种模拟算法。通过为深度为 3 的“砖砌”架构实现我们的一种算法(该架构很难进行精确模拟),我们发现一台笔记本电脑可以在 409×409 网格上模拟典型实例,变分距离误差小于 0.01,大约需要一分钟每个样本,而这项任务对于以前已知的电路模拟算法来说是难以完成的。数值证据表明该算法仍然渐近有效。我们严格的复杂性分离和猜想的关键在于观察到 2D 浅随机电路模拟可以简化为由交替进行的随机局部幺正和弱测量组成的 1D 动态形式的模拟。类似的过程最近成为一项深入研究的焦点,该研究通过数值发现,随着测量强度的变化,动力学通常会经历从高效模拟状态到低效模拟状态的相变。通过从随机量子电路到经典统计力学模型的映射,我们给出了分析证据,表明我们的算法会发生类似的计算相变,因为电路架构的参数(如局部希尔伯特空间维度和电路深度)
由于大量射频 (RF) 和微波 (MW) 应用,高频电路设计领域正受到工业界的广泛关注。改进的半导体器件使得高速数字和模拟系统得以广泛应用,如无线通信、全球定位、雷达以及相关的电气和计算机工程学科。这种兴趣转化为对具有全面高频电路设计原理知识的工程师的强烈需求。然而,对于学生、专业工程师甚至教授这门课程的教师来说,存在一个普遍的问题。现有的大多数教科书似乎针对两类不同的受众:A) 具有广泛理论背景的高级研究生水平人群,和 B) 对数学和物理严谨性不感兴趣的技术人员。因此,RF 电路设计以两种截然不同的形式呈现。对于高级学生来说,进入该领域通常是通过电磁场方法,而对于技术人员来说,嵌入在基尔霍夫定律中的基本电路方面是首选方法。这两种方法都很难充分解决高频设计原理的理论和实际问题。基本电路方法缺乏或只是表面上涵盖了电流和电压的波动性质,而电流和电压的反射和传输特性是射频电路行为不可或缺的要素。电磁场方法当然涵盖了波导和传输线方面,但远远没有触及设计高频放大器、振荡器和混频器电路的重要方面。这本教科书的目标是以一种方式开发射频电路设计方面,以便在不采用电磁场方法的情况下明确传输线原理的必要性。因此,除了大多数学院和大学提供的场和波一年级本科物理课程外,不需要任何电磁背景。具备基本电路理论知识和/或微电子学知识的学生可以使用本书,并涵盖从传输和微带线的基本原理到各种高频电路设计程序的整个范围。冗长的数学推导要么被放到附录中,要么放在与正文分开的例子中。这样可以省略一些枯燥的理论细节,从而将重点放在主要概念上。为了接受提供高水平设计体验的挑战,我们提供了许多例子,这些例子详细讨论了各种设计方法的哲学和复杂性,在许多情况下,这些例子长达数页。