在 BJT 中,TID 对氧化物电介质的损坏会导致:• 基极电流过大(通过与陷阱的复合增强和 β 退化)• 由于发射极面积增加(通过 N ot 的表面反转)导致 npn 器件中的集电极电流增加• 由于 CB 结中的载流子生成增加(通过陷阱),导致从集电极到基极 (CB) 的反向漏电流增加
本文通过 HRDP ®(高分辨率可剥离面板)技术介绍了一种新的 RDL 概念。它已受到业界的广泛关注,尤其是对于扇出型、芯片后置、晶圆级和面板级封装组件。本文介绍了 HRDP ® 的结构和材料。可提供各种尺寸和厚度的适用 HRDP ® 载体,用于圆形面板和带有玻璃或硅的方形/矩形面板,以满足客户要求。这可以简化流程并改善界面应力。本文详细介绍了使用 HRDP ® 的工艺步骤,这些步骤基本上使用 RDL 金属图案化中的现有工具(即光刻、显影/Descum 等),而不会破坏装配线布局和工艺流程。HRDP ® 与现有的电介质和光刻胶兼容。事实证明,基于凸块制造厂中用于 RDL 的电介质和光刻胶的功能,已经实现了 2/2 微米及以下的精细 L/S 几何形状。可靠性数据已共享。关键词 载体技术、HRDP ® (高分辨率可脱键面板)、机械脱键、线/间距 (L/S)、最后芯片、RDL、扇出型晶圆级 (FO-WLP)。面板级封装 (PLP)、热膨胀系数 (CTE)。
解释了解波颗粒双重性的量子力学,量子力学的必要性探索亚原子颗粒的行为。Schroedinger的时间独立波方程,波函数的物理意义 - Schroedinger波方程的应用。了解正常光,激光及其应用的基本概念,并了解光纤,原理(TIR),数值孔径,光纤类型,STEP索引和分级索引纤维,光纤纤维中的衰减。应用:光纤通信系统,光纤传感器,医疗内窥镜检查。研究磁性和超导性的概念,Bohr Magneton,滞后性质,域结构,Meissner效应,超导体的类型,BCS理论和超导体的应用。了解电介质,极化及其类型的概念,内部场,克劳西乌斯 - 摩塞蒂方程,频率和温度对电介质及其应用的影响 - 压电电性,pyro-电动性和铁电性。了解半导体,类型,载体浓度,热敏电阻,霍尔效应,以及了解PN结构的概念,I-V特征,LED,太阳能电池和照片二极管。讨论纳米技术,制备技术和表征(XRD,SEM和TEM),CNT,并了解放射性及其应用的基础。
对于高相干性固态量子计算平台来说,微波频率下低损耗的电介质是必不可少的。在这里,我们通过测量集成到超导电路中的由 NbSe 2 –hBN–NbSe 2 异质结构制成的平行板电容器 (PPC) 的品质因数,研究了六方氮化硼 (hBN) 薄膜在微波范围内的介电损耗。在低温单光子范围内,提取的 hBN 微波损耗角正切最多在 10 −6 中间范围内。我们将 hBN PPC 与铝约瑟夫森结集成,以实现相干时间达到 25 μs 的传输量子比特,这与从谐振器测量推断出的 hBN 损耗角正切一致。与传统的全铝共面传输相比,hBN PPC 将量子比特特征尺寸缩小了约两个数量级。我们的研究结果表明,hBN 是一种很有前途的电介质,可用于构建高相干量子电路,它占用空间大大减少,能量参与度高,有助于减少不必要的量子比特串扰。广义的超导量子比特包括由电感和电容元件分流的约瑟夫森结,它们共同决定了它的能谱 1 。虽然理想情况下,组成超导量子比特的材料应该是无耗散的,但量子比特退相干的主要因素是量子比特的电磁场与有损体积和界面电介质的相互作用 2 。在典型的超导电路中,介电损耗可能发生在约瑟夫森结的隧穿势垒中,以及覆盖设备的许多金属和基底界面的原生氧化层中 3、4 。这些电介质通常是具有结构缺陷的非晶态氧化物,可以建模为杂散两能级系统 (TLS)。虽然这些 TLS 的微观性质仍有待完全了解,但已确定 TLS 集合与超导量子电路中的电磁场之间的相互作用限制了量子比特的相干性和超导谐振器的品质因数。人们还怀疑 TLS 可能存在于设备制造过程中留下的化学残留物的界面处 4、5。
了解半导体,类型,载体浓度,热敏电阻,霍尔效应,以及了解PN结构的概念,I-V特征,LED,太阳能电池和照片二极管。解释了解波颗粒双重性的量子力学,量子力学的必要性探索亚原子颗粒的行为。Schroedinger的时间独立波方程,波函数的物理意义 - Schroedinger波方程的应用。了解正常光,激光及其应用的基本概念,并了解光纤,原理(TIR),数值孔径,光纤类型,STEP索引和分级索引纤维,光纤纤维中的衰减。应用:光纤通信系统,光纤传感器,医疗内窥镜检查。研究磁性和超导性的概念,Bohr Magneton,滞后性质,域结构,Meissner效应,超导体的类型,BCS理论和超导体的应用。了解介电,极化及其类型的概念,内部场,clausius- mossitti方程,频率和温度对电介质及其应用的影响 - 压电电力,pyro电力电力和铁电效率。讨论纳米技术,制备技术和表征(XRD,SEM和TEM),CNT,并了解放射性及其应用的基础。单位:1
专业领域是超高真空和压力设备和装置、纳米结构铁电体、纳米电子学、拉曼光谱、超晶格、自旋电子学、弛豫器、多铁性材料、高 k 电介质、高能量密度电容器的制造和特性研究、非易失性随机存取存储器元件和设备的开发、磁场传感器、高功率传输系统、绿色能源光伏设备、压电传感器、光学活性铁电弛豫器和血压相关传感器和设备的制造和特性研究。
摘要:本综述概述了区域选择性薄膜沉积 (ASD),主要关注通过化学气相沉积 (CVD) 和原子层沉积 (ALD) 形成的气相薄膜。区域选择性沉积已成功应用于微电子工艺,但迄今为止,大多数方法都依赖于高温反应来实现所需的基板灵敏度。微电子尺寸和性能的不断缩小以及新材料、图案化方法和器件制造方案正在寻求用于电介质、金属和有机薄膜的新型低温 (<400°C) ASD 方法的解决方案。为了概述 ASD 领域,本文严格回顾了 ASD 在微电子和其他领域取得成功所必须克服的关键挑战,包括对当前工艺应用需求的描述。我们概述了 CVD 和 ALD 过程中薄膜成核的基本机制,并总结了目前已知的半导体、金属、电介质和有机材料的 ASD 方法。对于一些关键材料,定量比较了不同反应前体的选择性,从而对有利反应物和反应设计的需求提供了重要见解。我们总结了 ASD 的当前局限性以及使用先进的自下而上的原子级工艺可以实现的未来机遇。
2d Ultralow-k无定形碳BARBAROS OEZYILMAZ材料科学与工程系,EA Block,EA,#03-09,9工程驱动器1,新加坡117575,新加坡新加坡大学物理大学,新加坡国立大学物理学系,2科学驱动器3,S12,S12,S12,SIS12,SIGER DRICERS NIGHAPORE 117551,SINDAPERE,SINGAPERE,SINDAPERE,国际化学,国籍,国籍,国际化学,国籍,国籍,国际化学,国际化,新加坡新加坡国立大学新加坡大学功能智能材料研究所,第9级,第9级,科学驱动器2,新加坡117544,新加坡大学新加坡大学barbaros@nus.edu.sg.sg.sg二维(2D)材料在Monolayer厚度较高的范围中,Science Drive 2,新加坡117544 117544原子极限。尽管正在进行的综合电路的2D革命取得了重大进步,但一个关键的构件,即2D Ultralow-K8(ULK)电介质,但仍未报告。挑战在于实现小于3的介电常数(k),因为传统的低K电介质由于其无定形或多孔性质而在2D极限内固有地不稳定。还需要使用低K的超薄电介质的实现来解决集成电路缩放中的当前瓶颈。具体而言,由于导电元件之间的距离缩小到10 nm以下,因此必须使用低K材料来最大程度地减少寄生电容。在这里,我们表明2D无定形碳(稀薄至0.8 nm)是一种机械强大的2D ULK介电介电,k为1.35,介电强度为28-31 mV cm-1。缺乏任何远距离顺序,其内在的2D性质,SP2碳特性和低密度对于最大程度地减少介电介电常数至关重要。此外,它以创纪录的金属离子扩散时间(TTF)为10+10 s的现有电介质扩散降解的脆弱性甚至是单层。因此,可以消除最多需要3 nm的额外层,这尤其重要,因为金属线宽度接近10 nm。结合其低温,直接和共形生长,即使在介电上,这些关键特征也能够对基于硅的半导体电子产品进行大量改进,并确保与未来的2D电子产品兼容。
在本项目中,我们研究了在半活性自适应结构中使用可变刚度/可变强度结构元素的使用,采用双重方法来实现概率。在由NFP 62资助的项目中,我们研究了介电材料,以实施多层结构的静电层压,在一个并行项目中,由ETH的结构技术中心资助,我们已经确定了上述结构概念,这些结构概念可以利用上述元素来实现新的和有用的功能,以实现新的和有用的结构,并将其与特定的机翼结构相关联。这两个平行项目的努力是从相当早的阶段进行了协调的,旨在在高性能,轻质结构的结构演示者中实施电键粘合层压板(EBL的目的)。本项目的第一个成就是对与当前应用相关的聚合物膜的性质的详细研究:介电常数,介电强度和体积电阻率。这第一步是决定性地研究介电材料的框架,以便为其用于EBL应用的资格,这是决定性的。也很快就清楚了,也从对介电材料进行的研究也很快,即使在该项目的范围中包括材料合成,也不太可能实现介电强度和介电常数的同时增加。这些发现的相关性远远超出了用于EBL应用的电介质的优化。我们的注意力很快就针对对分层介质的调查,基于溶液的调查,通过其他小组的观察来证实,由其他群体进行的观察结果证实,由多层组成的电介质会提供介电强度的介电功能,而不是在材料和应有的材料中造成的材料不可避免地会导致一个不可避免的介绍性,并且是否会增加材料的范围,并且应有的可能性 - 应有的可能性,而应有的可能性,那么它是应有的,如果是应有的含量,那么它是不可避免的。用于制备多层介电。关于材料有效介电特性的问题很快就会出现,并且在项目的第一阶段获得的高近DC领域的介电和绝缘材料的知识清楚地表明,该材料的教科书近似是无限量电阻的完美介电性,这将无法适当地表示问题。因此,开发并通过实验验证了多层膜的介电响应的模型,该模型也考虑了组件的有限体积抵抗力。开发的分析模型代表了优化高能介电膜以不同频率应用的高能介电膜的基础。高压直流电网的未来开发将需要开发可靠的固体绝缘材料。多层电介质可以很好地代表一类有趣的介电和绝缘元素。此类投资从未在此细节上进行。结果也相对于此外,显然需要有效地撞击多层绝缘层层上静电场层的理解,这显然是必要的,以了解导致高场上此类材料系统失败的机制。在项目的最后一部分中,详细研究了EBL元素的机械性能,该元素与与项目结构分支的合作框架中所设想的结构应用有关的负载案例进行了详细研究。
