摘要—本文报告了一项综合研究,该研究优化了使用镍、钛和钼接触金属制成的 3.3 kV 结势垒肖特基 (JBS) 二极管的 OFF 和 ON 状态特性。在此设计中,使用与优化终端区域相同的植入物来形成 JBS 有源区域中的 P 区。P 区的宽度和间距各不相同,以优化器件的 ON 和 OFF 状态。所有测试的二极管均显示出高阻断电压和理想的开启特性,最高额定电流为 2 A。然而,发现漏电流和肖特基势垒高度 (SBH) 与肖特基与 p + 区域的比例成比例。没有 p + 区域的全肖特基和具有非常宽肖特基区域的肖特基具有最低的 SBH(Ni 为 1.61 eV、Mo 为 1.11 eV、Ti 为 0.87 eV)和最高的漏电流。肖特基开口最小(2μm)的二极管具有最低的关断状态漏电,但它们受到周围 p + 区域的严重挤压,从而增加了 SBH。性能最佳的 JBS 二极管是间距最窄的 Ni 和 Mo 器件,p + 植入物/肖特基区域均为 2μm 宽。这些器件提供了最佳的平衡器件设计,具有出色的关断状态性能,而肖特基比保证了相对较低的正向压降。
d 中山大学化学学院生物无机与合成化学教育部重点实验室,广州 510275 基于钙钛矿纳米晶体的发光二极管 (PNCs-LED) 引起了下一代显示和照明技术的极大兴趣,因为它们的色纯度、高亮度和发光效率接近从器件结构中提取电致发光的固有极限。虽然现在是开发有效的光耦合策略以进一步提高器件性能的时候了,但 PNC-LED 的这一技术相关方面仍然没有明确的解决方案。在这里,遵循理论指导并且没有集成复杂的光子结构,我们实现了稳定的 PNC-LED,其 EQE 高达 29.2%(平均 EQE =24.7%),这大大突破了普通 PNC-LED 的耦合限制,并系统地超越了以前任何基于钙钛矿的器件。这种前所未有的性能的关键是引导薄至 10 nm 的 PNC 发射层中的复合区,我们通过使用用镍氧化物层重新表面化的 CsPbBr 3 PNC 精细平衡电子和空穴传输来实现这一点。超薄方法具有普遍性,原则上也适用于其他钙钛矿纳米结构,用于制造高效、颜色可调的透明 LED,非常适合不显眼的屏幕和显示器,并与光子元件的集成兼容,以进一步提高性能。关键词:卤化铅钙钛矿纳米晶体、发光二极管、外部量子效率、光耦合、透明 LED 近几年来,铅因其优越的光学性能和经济实惠的溶液加工性而备受推崇
在过去的二十年中,Gan Hemts(高电子迁移率晶体管)已证明其超过硅电源器件限制的高潜力。然而,基于GAN的侧向下摆遭受了几个突出的问题,例如电子捕获和相关的设备可靠性,这是由于闸门边缘处的尖峰电场以及没有雪崩效应。此外,较高的击穿电压需要增加门才能排出距离,从而导致不需要的大设备尺寸。这就是为什么垂直GAN Power设备越来越引起人们的兴趣和社区的强烈努力的原因。的确,高击穿电压,雪崩能力,具有高电流扩展的电场管理和小型设备足迹是垂直电源设备的一些主要优势。如果在硅底物上生长,则可以大大降低整体成本。在这项工作中,我们演示了具有高性能和线性击穿电压缩放的准垂直gan-on-si销钉二极管,并具有漂移层的厚度。完全垂直销钉二极管也被制造出了相似的崩溃场,甚至可能降低了反抗性的罗恩。
当前使用的大多数终身测试方法标准都仅考虑参数故障;那就是LED产品的光输出维护。重要的是,测试和预测仅基于系统中LED包的测量。即使考虑了整个系统,研究表明,应用中的照明产品可能会在参数或灾难性上失败。文献表明LED系统寿命取决于应用环境和使用模式。一起,这些条件会导致高LED连接温度(降低了芯片周围的组件,并导致参数衰竭)和互连处的热应力(这导致连接断裂并导致灾难性故障)。因此,为了准确估计LED照明系统的寿命,测试方法和实验设置必须具有改变环境条件和开关开关模式的能力。
对可持续发展的不懈追求使沿海国家朝着理性的剥削和利用海洋资源,促进了充满活力的海洋经济。固态照明技术已成为这项努力中的一种变革力量,为水下和表面海洋应用(例如光通信和海洋雪莉)提供了创新的解决方案。1 - 4个主要的传统海洋照明设备,依靠白炽灯和金属卤化物(MH)灯,受到固有的腰背的困扰,包括高昂的能量消耗,有限的寿命和有限的表现。更可持续的替代方案,例如发光二极管(LED),尤其是白色发光二极管(WLEDS)现在正在取代过时的光源,将自己确立为
摘要。可见光通信(VLC)是一项采用发光二极管(LED)的新兴技术,可以同时提供照明和无线数据传输。利用具有成本效益的可打印有机LED(OLEDS)作为VLC系统中环保发射器对光谱,物联网,感应和光学范围的未来应用非常有吸引力。在这里,我们总结了VLC中LED来源的新兴半导体材料的最新研究进度,并突出显示基于无毒和成本效益的有机半导体的OLED有很好的光学通信机会。我们进一步研究了为一般照明实现高性能的白色OLED的努力,尤其是关注基于OLED的VLC的研究状况和机会。还讨论了开发高性能OLED的不同解决方案处理的制造和打印策略。最后,提供了下一代有机VLC的未来挑战和潜在前景的前景。
当前最先进的量子点发光二极管的外部量子效率受限于较低的光子输出耦合效率。采用纳米棒、纳米片和点盘纳米晶体等取向纳米结构的发光二极管有利于光子输出耦合;然而,它们的内部量子效率往往会受到影响,因此实现净增益一直颇具挑战性。本文报道了各向同性形状的量子点,其特征是由纤锌矿相和闪锌矿相组成的混合晶体结构。纤锌矿相促进偶极-偶极相互作用,从而使溶液处理薄膜中的量子点定向,而闪锌矿相则有助于提升电子态简并度,从而实现定向光发射。这些特性的结合在不影响内部量子效率的情况下改善了光子输出耦合。制备的发光二极管的外部量子效率为 35.6%,并且可以在初始亮度为 1,000 cd m –2 的情况下连续运行 4.5 年,性能损失最小约为 5%。
摘要:磷化铟 (InP) 量子点使不含重金属、发射线宽窄且物理上可弯曲的发光二极管 (LED) 成为可能。然而,高性能红色 InP/ZnSe/ZnS LED 中的电子传输层 (ETL) ZnO/ZnMgO 存在高缺陷密度,沉积在 InP 上时会猝灭发光,并且由于陷阱从 ETL 迁移到 InP 发光层而导致性能下降。我们推测,ZnS 外壳上 Zn 2+ 陷阱的形成,加上 ZnO/ZnMgO 和 InP 之间的硫和氧空位迁移,可能是造成这一问题的原因。因此,我们合成了一种双功能 ETL(CNT2T,3 ′,3 ′″,3 ′″″-(1,3,5-三嗪-2,4,6-三基)三(([1,1 ′-联苯]-3-腈)),旨在局部和原位钝化 Zn 2+ 陷阱并防止层间空位迁移:小分子 ETL 的主链包含三嗪吸电子单元以确保足够的电子迁移率(6 × 10 − 4 cm 2 V − 1 s − 1),具有多个氰基的星形结构可有效钝化 ZnS 表面。我们报告的红色 InP LED 具有 15% 的 EQE 和超过 12,000 cd m − 2 的亮度;这代表了基于有机 ETL 的红色 InP LED 中的记录。■ 简介
摘要 - 我们介绍了新的INGAAS/INP单光雪崩二极管(SPAD)的设计和实验性 - 具有两个不同直径的二极管:i)10 µm设备,适用于基于光学的量子量子应用; ii)一个25 µm的一个,更适合自由空间应用。与上一代相比,我们改进了双锌扩散的设计并优化了层结构。我们在225 K和5 V多余的偏置下分别达到了低黑暗计数率,分别为10 µm和25 µM设备,在10 µM检测器时,分别在175 K时下降到每秒几十秒。在5 V多余的偏置和225 K温度下,这两个设备还显示出较高的光子检测效率(1064 nm时为33%,在1310 nm处为31%,在10 µM Spad中为1550 nm时25%)。通过自定义读数集成电路测量了后泵,实现了非常低的概率值。时机抖动与上一代设备相媲美。