MAPK是通用的真核信号传导因子,其功能被认为取决于其激活剂,底物和iNactivators对公共对接基序(CD)的识别。我们通过执行相互作用的基础并确定结合配体结合的MPK4晶体结构来研究拟南芥MPK4的CD结构域的作用。我们揭示了MPK4的CD域对于其上游MAPKKS MKK1,MKK2和MKK6对于相互作用和激活至关重要。cys181被证明是对活性氧的体外响应的磺酰基的。为了测试C181在体内的功能,我们生成了野生型(WT)MPK4-C181,Nonsulfenylabable MPK4-C181S,并在MPK4淘汰赛中模仿MPK4-C181D线的潜在硫乙基。我们分析了MPK4-C181S具有WT活性并补充MPK4表型的生长,发育和压力反应中的表型。相比之下,MPK4-C181D不能被上游MAPKK激活,并且不能补充MPK4的现场类型。我们的发现表明,CD基序是必不可少的,并且是由上游MAPKK激活MPK4功能所必需的。此外,生长,发育或免疫功能需要上游激活MPK4蛋白激酶。
摘要背景:Covid-19(2019年冠状病毒病)是由严重的急性呼吸综合症2型(SARS-COV-2)引起的,这构成了明显的全球健康和经济危机,该危机敦促有效治疗。方法:总共11个分子(Baricitinib,Danoprevir,Dexamethasone,Hydrox- Ychloroquine,Ivermectin,lopinavir,甲基甲基甲虫,Remdesivir,Remdesivir,Ritononavir,Ritonavir,Ritonavir和Saridegib和Saridegib,saridegib,saridegib,saridegib,condina contine conto ander cons of tosect in select ins seption condine condine contine condine sout solect solect通过靶向SARS-COV的主要蛋白酶(MPRO)的抗病毒活性,这是一种半胱氨酸蛋白酶,介导病毒复制过程中多蛋白的成熟裂解。结果:三种药物与N3(活性MPRO抑制剂作为对照)表现出更强的结合功能:Danoprevir(–7.7 kcal/mol),remdesivir(–8.1 kcal/mol)和saridegib(–7.8 kcal/mol)。在Glya的Danoprevir-Mpro复合物中鉴定出两个主要的常规氢键:143和GLNA:189,而残基GLUA:166形成了碳 - 氢键。在Asna:142,血清:144,CYSA:145,HISA:163,GLUA:166和GLNA:189的Remdesivir中鉴定出七个主要的常规氢键。与抗坏血酸(–5.4 kcal/mol)相比,头孢氨思显示出对MPRO(–7.9 kcal/mol)的结合性更好(–5.4 kcal/mol)。在HISA:164,POA; 168,GLNA; 189和THRA:190的头孢氨思-Mpro复合物中形成了四个碳 - 氢键。结论:这项研究的发现表明,这些药物可能通过靶向MPRO蛋白来抑制SAR-COV-2病毒。
摘要:本研究通过对六种常用抗癌药物的构象分析,确定了能量最低的分子结构,以作为对接模拟的初始数据。利用AutoDock Vina软件,研究了6种FDA批准的药物(培美曲塞、伊立替康、他莫昔芬、吉西他滨、拓扑替康和替莫唑胺)与DNA的相互作用机制。此外,对所研究的药物-DNA结构进行了MM/PB(GB)SA计算。计算出的相互作用的结合亲和力和结合自由能显示了结构的稳定性。研究发现,这些分子与DNA相互作用的活性位点是相同的,它们的各种相互作用,主要是氢键,对结构的稳定性起着重要作用。此外,还确定了所研究分子的药效团特征。本研究的目的是深入研究标题药物与DNA的结合性质。
简介 在精神病学领域,三环类抗抑郁药被广泛用于治疗各种疾病,尤其用于治疗临床抑郁症 [1–3]。在大多数情况下,这些药物的主要目的是抑制突触前区域对去甲肾上腺素或血清素的吸收。然而,这些药物的效力各不相同,而且往往会引起不良的副作用。尽管有更新、更安全的替代品,但三环类抗抑郁药仍然被用作处方药,因为它们成本较低,而且是一类最突出的抗抑郁药。尽管还有其他选择,情况仍然如此。三环原子构成三环抗抑郁药的分子结构,这些药物的名称由此而来 [4–7]。在大多数情况下,核心环由七个原子组成,侧链由 N-烷基甲胺或 N-烷基二甲胺组成。丙咪嗪、地昔帕明、氯米帕明、阿米替林、去甲替林、多塞平和曲米帕明等药物是常用的三环类抗抑郁药的例子[8-10]。
抽象的外臂动力蛋白(OAD)是纤毛跳动的主要力发生器。尽管OAD损失是人类原发性睫状运动障碍的最常见原因,但OAD的对接机制在纤毛双线微管上(DMT)仍然难以捉摸脊椎动物。在这里,我们使用斑马鱼精子和冷冻电子层析摄影术分析了脊椎动物OAD-DC(停靠复合物)的五个组成部分中的Calaxin/efcab1和ARMC4的功能。ARMC4的突变导致OAD完全丢失,而卡拉辛的突变仅导致OAD的部分损失。 详细的结构分析表明,卡拉辛 - / - OAD通过Calaxin以外的其他DC组件将DMT束缚在DMT上,并且重组卡拉辛可以自主挽救缺陷的DC结构和OAD的不稳定性。 我们的数据证明了Calaxin和ARMC4在OAD-DMT相互作用中的离散作用,这表明OAD对接在脊椎动物中DMT上的稳定过程。ARMC4的突变导致OAD完全丢失,而卡拉辛的突变仅导致OAD的部分损失。详细的结构分析表明,卡拉辛 - / - OAD通过Calaxin以外的其他DC组件将DMT束缚在DMT上,并且重组卡拉辛可以自主挽救缺陷的DC结构和OAD的不稳定性。我们的数据证明了Calaxin和ARMC4在OAD-DMT相互作用中的离散作用,这表明OAD对接在脊椎动物中DMT上的稳定过程。
摘要 筛选已批准的药物以检测其对抗新型病原体的活性可能是全球应对流行病的快速反应策略的重要组成部分。这种高通量重新利用筛选已经确定了几种具有对抗 SARS-CoV-2 潜力的现有药物。然而,要将这些热门药物开发为专门针对这种病原体的药物,需要明确识别它们相应的靶标,而高通量筛选通常无法揭示这一点。我们在此介绍了一种新的计算逆对接协议,该协议使用全原子蛋白质结构和对接方法的组合对几种现有药物的靶标进行排序,最近的多个高通量筛选检测到了这些药物的抗 SARS-CoV-2 活性。我们用已知的药物-靶标对(包括非抗病毒和抗病毒化合物)证明了该方法的有效性。我们对 152 种可能适合重新利用的不同药物进行了逆对接程序。最常见的优先靶标是人类酶 TMPRSS2 和 PIKfyve,其次是病毒酶解旋酶和 PLpro。所有选择 TMPRSS2 的化合物都是已知的丝氨酸蛋白酶抑制剂,而那些选择 PIKfyve 的化合物都是已知的酪氨酸激酶抑制剂。对对接姿势的详细结构分析揭示了这些选择产生的原因,并可能有助于更合理地设计针对这些靶标的新药。
摘要在这项研究中,我们分析了双向S. cerevisiae jinesin-5 Motor,CIN8的颈链(NL)变体的细胞内功能和运动特性。我们还通过建模 - 在NL对接过程中检查了H键的配置。只要在n束束位置处的保守的骨干H键(提议稳定NL的对接构象)仍然完好无损,稳定的H键数量会导致部分功能变体。 消除这种保守的H键导致产生非功能性CIN8变体。 令人惊讶的是,通过通过加上端端的定向运动蛋白-5 EG5替换NL CIN8产生的N-LATCH位置的其他H键稳定,也产生了非功能性变体。 在CIN8中存在的N-LATCH ASPARAGINE用甘氨酸的单个替代>中,如CIN8中所存在,消除了额外的H键稳定化并挽救了功能缺陷。 我们得出的结论是,NL对接过程中的确切的N闩锁稳定对于双向驱动蛋白-5 CIN8的功能至关重要。稳定的H键数量会导致部分功能变体。消除这种保守的H键导致产生非功能性CIN8变体。令人惊讶的是,通过通过加上端端的定向运动蛋白-5 EG5替换NL CIN8产生的N-LATCH位置的其他H键稳定,也产生了非功能性变体。在CIN8中存在的N-LATCH ASPARAGINE用甘氨酸的单个替代>中,如CIN8中所存在,消除了额外的H键稳定化并挽救了功能缺陷。我们得出的结论是,NL对接过程中的确切的N闩锁稳定对于双向驱动蛋白-5 CIN8的功能至关重要。
摘要:飞机周转过程中关键里程碑节点的自动采集是机场协同决策发展需求中的重要内容。本文提出一种基于计算机视觉的框架,自动识别航班进出站、停靠/脱离站活动并记录相应的关键里程碑节点。该框架无缝集成了计算机视觉领域的最新算法和技术,包括预处理和关键里程碑采集两个模块。预处理模块从机场地面复杂背景中提取关键里程碑节点执行者的时空信息。第二个模块针对两类关键里程碑节点,即以路内和路外为代表的基于单目标的节点和以对接和解除对接楼梯为代表的基于双目标交互的节点,分别设计了两种关键里程碑的收集方法。构建了两个数据集用于所提框架的训练、测试和评估。现场实验结果表明,所提框架可以替代目前常规的手动记录方法,有助于自动收集这些关键里程碑节点。
摘要:飞机周转过程中关键里程碑节点的自动采集是机场协同决策发展需求中的重要内容。本文提出一种基于计算机视觉的框架,自动识别航班进出站、停靠/脱离站活动并记录相应的关键里程碑节点。该框架无缝集成了计算机视觉领域的最新算法和技术,包括预处理和关键里程碑采集两个模块。预处理模块从机场地面复杂背景中提取关键里程碑节点执行者的时空信息。第二个模块针对两类关键里程碑节点,即以路内和路外为代表的基于单目标的节点和以对接和解除对接楼梯为代表的基于双目标交互的节点,分别设计了两种关键里程碑的收集方法。构建了两个数据集用于所提框架的训练、测试和评估。现场实验结果表明,所提框架可以替代目前常规的手动记录方法,有助于自动收集这些关键里程碑节点。
摘要:异藻醇(IMO)的高度聚合不仅有效地促进了人体中双杆菌的生长和繁殖,而且还使其抗胃酸的快速降解具有抗性,并可以刺激胰岛素分泌。在这项研究中,我们选择了表达的右旋酶(PSDEX1711)作为研究模型,并使用自动库克Vina分子对接技术来对接IMO4,IMO5和IMO6与其使用该突变位点,然后通过其定型型氨基酸的构图和水合构图的构图进行了启用,并研究了该突变的潜在作用。发现突变酶H373A的IMO4产量显着增加至62.32%。饱和突变表明,突变酶H373R的IMO4产量升至69.81%,其相邻位点S374R IMO4产量增加到64.31%。对突变酶的酶特性的分析表明,H373R的最佳温度从30℃降低到20℃,并且在碱性条件下维持了超过70%的酶活性。双点饱和突变结果表明,突变酶H373R/N445Y IMO4产量增加到68.57%。结果表明,具有基本非极性氨基酸的373个位点(例如精氨酸和组氨酸)会影响酶的催化特性。发现为IMO4的未来销售生产和右旋酶结构的分析提供了重要的理论基础。