广泛应用于自主驾驶中的基于深度学习的单眼深度估计(MDE)很容易受到对抗性攻击的影响。先前针对MDE模型的物理攻击依赖于2D广泛的补丁,因此它们仅影响MDE地图中的一个小型局部区域,但在各种观点下都失败了。为了解决这些限制,我们提出了3D深度傻瓜(3d 2傻瓜),这是对MDE模型的第一个基于3D纹理的对抗性攻击。3d 2傻瓜被专门优化,以生成3D对抗纹理对型号的车辆类型,并在恶劣天气条件(例如雨水和雾)中具有改善的鲁棒性。实验结果验证了我们3d 2傻瓜在各种情况下的出色性能,包括车辆,MDE Mod-els,天气状况和观点。现实世界中使用打印3D纹理的实验实验进一步表明,我们的3d 2傻瓜可能会导致超过10米的MDE误差。该代码可在https://github.com/gandolfczjh/3d2fool上找到。
高等教育机构在培养学生掌握实现可持续发展目标所需的基本技能方面发挥着至关重要的作用。这些技能包括战略思维、设计导向方法、社会责任、解决问题的能力、远见和有效的跨学科合作。通过将可持续发展目标纳入高等教育课程,未来的专业人士可以获得应对复杂、相互关联的全球挑战所需的知识、工具和能力。这种方法促进了高收入、中收入和低收入国家之间的相互学习,并促进了跨学科和多学科解决问题。例如,为了确保环境可持续的建筑实践,土木工程专业的学生必须理解可持续发展目标原则并将其融入到他们的学习和职业发展中。
来自图像的深度估计是具有广泛应用的计算机视觉中的一个长期问题。对于基于视觉的自动驾驶系统,感知深度是理解道路对象和建模3D环境图的相关性的不可或缺的模块。由于深度神经网络用于求解各种视觉概率,因此基于CNN的方法[2-5,13,39 - 42,44,44,46,48,52]主导了各种深度基准。根据输入格式,它们主要将其分为多视图深度估计[3,13,23,26,44,45,51,53]和单视深度估计[14 - 16,19,37,38]。多视图方法估计深度的假设,即给定的深度,相机校准和摄像头姿势,这些像素应相似。他们依靠表现几何形状来三角形高质量深度。但是,多视图方法的准确性和鲁棒性在很大程度上依赖于相机的几何配置以及视图之间匹配的对应关系。首先,需要足够翻译相机以进行三角度。在自主驾驶的情况下,汽车可能会停在交通信号灯处或不移动而不移动,这会导致故障三角剖分。此外,多视图方法遭受动态对象和无动电区域的影响,它们在自动驱动方案中无处不在。另一个问题是对移动车辆的施加优化。在存在的大满贯方法中不可避免地噪声,更不用说具有挑战性和可取的情况了。具体来说,我们提出了一个两个分支网络,即例如,一辆机器人或自动驾驶汽车可以在不重新校准的情况下部署多年,原因是嘈杂的姿势。相比之下,作为单视图方法[14 - 16,19,37,38]依赖于对场景的语义理解和透视投影提示,它们对无纹理区域,动态对象,而不是依赖相机姿势更为易用。但是,由于规模歧义,其性能仍然远非多视图方法。在这里,我们倾向于考虑是否可以很好地结合两种方法的好处,以实现自主驾驶场景中的稳健和准确的单眼视频深度估计。尽管已经在先前的工作中探索了基于融合的系统[1,9],但他们都假定了理想的相机姿势。结果是融合系统的性能甚至比单视深度估计的噪声姿势还差。为了解决这个问题,我们提出了一个新型的自适应融合网络,以利用多视图和单视图方法的优势,并减轻其缺点,以保持高度的精度,并在噪声姿势下提高系统的影响力。一个靶向单眼深度提示,而另一个则利用多视图几何形状。两个分支都预测了深度图和置信图。补充语义提示和边缘细节在多视图分支的成本汇总中丢失了
在高增长组织中,在快速开发周期中确保产品质量至关重要。诸如Dora(DevOps研究和评估)和空间(软件生产力,评估,控制和评估)等框架具有高级开发人员的生产率,但系统地改善质量实践的差距很大。本文介绍了专门针对高增长组织的综合质量成熟模型。该模型包括14个质量维度,从静态测试到配置管理,提供了一种整体质量增强方法。通过案例研究和实施策略,我们证明了该模型在提高产品质量,降低缺陷以及提高快速扩展环境中的运营效率方面的功效。
我的名字叫吉姆·康纳顿(Jim Connaughton)。我是JLC Strategies的首席执行官,技术和政策咨询公司,与技术初创公司,创新项目开发人员,私人和上市公司以及少数几个政策智囊团,大学和政府组织合作。在这次讨论中,我还担任了八年的环境质量顾问主席,并自豪地在国会一致通过了原始的小型企业责任救济和布朗领域的振兴法案中,以与成千上万的角色一起发挥了很小的作用(“ 2002年的布朗领域振兴法案)(“布朗文件法案”)。我还是AI数据中心基础设施启动Nautilus Data Technologies的董事长兼首席执行官; C3.AI的执行副总裁,最早的AI软件技术公司之一;以及Constellation Energy执行副总裁,这是美国最具创新性的开发商和发电的运营商,以及能源技术和服务的提供商。我在布朗领域及其周围度过了职业生涯的大部分时间。
在这项研究中,我们评估了自主驾驶(AD)系统中增强学习的鲁棒性(RL),特别是反对对抗攻击的稳健性。我们采用了Karavolos等人提出的基于Q学习的AD模型。[1]的简单性,是我们分析的基础。此选择使我们能够在简单的Q学习方法和更复杂的RL系统之间进行明显的比较。我们设计了两个威胁模型,以模拟对基于RL的广告系统的对抗性攻击。第一个模型涉及在RL模型的细调中注入未发现的恶意代码,使其容易受到对抗性扰动的影响,这可能会导致在特定的触发条件下碰撞。第二个威胁模型旨在通过直接改变RL模型在特定触发条件下的行动决策来引起碰撞,这代表了一种更隐秘的方法。基于这些威胁模型,我们对两种主要情况的实证研究提出:操纵传感器输入和直接对动作的扰动。研究结果表明,尽管基于RL的AD系统表现出针对传感器输入操纵的弹性,但在受到直接动作扰动时它们会表现出脆弱性。主要的和宽容的场景涉及更改传感器读数,例如在偏心转弯期间,这可能会误导系统并可能导致事故。这对于小误差很大的操作至关重要。第二种情况直接扰动动作,更多地是对基于RL的AD系统脆弱性的理论研究,而不是实用的现实世界威胁。
将驾驶行为适应新的环境,库斯和法律是自主驾驶中的一个长期问题,排除了澳大利亚车辆(AVS)的广泛部署。在本文中,我们提出了LLADA,这是一种简单而强大的工具,它使人类驾驶员和自动驾驶汽车都可以通过调整其任务和动作计划来在新的地方进行访问规则,从而在任何地方开车。llada通过利用大型语言模型(LLMS)在解释本地驾驶员手册中的流量规则方面的令人印象深刻的零弹性可推广性来实现这一目标。通过广泛的用户研究,我们表明LLADA的说明可用于消除野外野外未受的情况。我们还展示了LLADA在现实世界数据集中适应AV运动计划策略的能力; Llada优于我们所有指标的基线计划。请查看我们的网站以获取更多详细信息:Llada。
扩散模型在建模复合物和多模态轨迹分布方面表现出色,以进行决策和控制。最近提出了奖励级别指导的denoising,以生成轨迹,从而最大程度地提高了可差异的奖励函数,又是扩散模型捕获的数据分布下的可能性。奖励级别指导的denoisising需要适合清洁和噪声样本的可区分奖励功能,从而限制了其作为一般轨迹优化器的应用。在本文中,我们提出了扩散-ES,一种将无梯度优化与轨迹deNoising结合起来的方法,以优化黑框非差异性目标,同时留在数据管理中。扩散-ES样品在进化过程中的轨迹 - 从扩散模型中搜索,并使用黑框奖励函数得分。它使用截断的扩散过程突变高得分轨迹,该过程应用了少量的no弱和降解步骤,从而可以更有效地探索解决方案空间。我们表明,扩散-ES在Nuplan上实现了最先进的表现,Nuplan是一个已建立的闭环计划基准,用于自动驾驶。扩散-ES的表现优于现有的基于抽样的计划者,反应性确定性或基于扩散的策略以及奖励梯度指导。此外,我们表明,与先前的指导方法不同,我们的方法可以优化由少数弹药LLM提示产生的非差异性语言形状奖励功能。这使我们能够解决最困难的NUPLAN场景,这些方案超出了现有的传统优化方法和驾驶策略的能力。在以遵循指示的人类老师的指导下,我们的方法可以产生新颖的,高度复杂的行为,例如训练数据中不存在的积极的车道编织。1
实现强大而实时的3D感知是自动驾驶汽车的基础。虽然大多数现有的3D感知方法优先考虑检测准确性,但十个忽略了关键方面,例如计算效率,板载芯片部署友好性,对传感器安装偏差的韧性以及对各种VE-HILE类型的适应性。为了应对这些挑战,我们提出了nvautonet:一种专业的鸟类视图(BEV)感知网络 - 针对自动化车辆的明确量身定制。nvautonet将同步的相机图像作为输入,并预测3D信号(例如障碍物,自由空间和停车位)。NVAUTONET架构(图像和Bev Back-bones)的核心依赖于有效的卷积网络,该网络使用Tensorrt优化了高性能。我们的图像到BEV转换采用简单的线性层和BEV查找表,从而确保了快速推理速度。Nvautonet在广泛的专有数据集中受过培训,在NVIDIA DRIVE ORIN SOC上以每秒53帧的速度运行,始终达到升高的感知精度。值得注意的是,Nvautonet表现出对不同汽车模型产生的偏差偏差的韧性。此外,Nvautonet在适应各种车辆类型方面表现出色,这是通过廉价模型的微调程序来促进的,可以加快兼容性调整。